Toán học Toán Lớp 8: tìm Min: E=2x^2+9y^2-6xy-6x-12y+2004 4 Tháng Hai, 2023 By Thanh Hương Toán Lớp 8: tìm Min: E=2x^2+9y^2-6xy-6x-12y+2004
Giải đáp: \[{E_{\min }} = 1975 \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = \dfrac{7}{3}\end{array} \right.\] Lời giải và giải thích chi tiết: Ta có: \(\begin{array}{l}E = 2{x^2} + 9{y^2} – 6xy – 6x – 12y + 2004\\ = \left( {{x^2} – 6xy + 9{y^2}} \right) + \left( {4x – 12y} \right) + \left( {{x^2} – 10x + 25} \right) + 1979\\ = \left[ {{x^2} – 2.x.3y + {{\left( {3y} \right)}^2}} \right] + 4.\left( {x – 3y} \right) + \left( {{x^2} – 2.x.5 + {5^2}} \right) + 1979\\ = {\left( {x – 3y} \right)^2} + 4.\left( {x – 3y} \right) + {\left( {x – 5} \right)^2} + 1979\\ = \left[ {{{\left( {x – 3y} \right)}^2} + 4.\left( {x – 3y} \right) + 4} \right] + {\left( {x – 5} \right)^2} + 1975\\ = \left[ {{{\left( {x – 3y} \right)}^2} + 2.\left( {x – 3y} \right).2 + {2^2}} \right] + {\left( {x – 5} \right)^2} + 1975\\ = {\left[ {\left( {x – 3y} \right) + 2} \right]^2} + {\left( {x – 5} \right)^2} + 1975\\ = {\left( {x – 3y + 2} \right)^2} + {\left( {x – 5} \right)^2} + 1975\\{\left( {x – 3y + 2} \right)^2} \ge 0,\,\,\,\,\forall x,y\\{\left( {x – 5} \right)^2} \ge 0,\,\,\,\forall x\\ \Rightarrow {\left( {x – 3y + 2} \right)^2} + {\left( {x – 5} \right)^2} + 1975 \ge 1975,\,\,\,\,\forall x,y\\ \Rightarrow E \ge 1975,\,\,\,\forall x,y\\ \Rightarrow {E_{\min }} = 1975 \Leftrightarrow \left\{ \begin{array}{l}{\left( {x – 3y + 2} \right)^2} = 0\\{\left( {x – 5} \right)^2} = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x – 3y + 2 = 0\\x = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = \dfrac{7}{3}\end{array} \right.\end{array}\) Vậy \({E_{\min }} = 1975 \Leftrightarrow \left\{ \begin{array}{l}x = 5\\y = \dfrac{7}{3}\end{array} \right.\) Trả lời
x = 5\\
y = \dfrac{7}{3}
\end{array} \right.\]
E = 2{x^2} + 9{y^2} – 6xy – 6x – 12y + 2004\\
= \left( {{x^2} – 6xy + 9{y^2}} \right) + \left( {4x – 12y} \right) + \left( {{x^2} – 10x + 25} \right) + 1979\\
= \left[ {{x^2} – 2.x.3y + {{\left( {3y} \right)}^2}} \right] + 4.\left( {x – 3y} \right) + \left( {{x^2} – 2.x.5 + {5^2}} \right) + 1979\\
= {\left( {x – 3y} \right)^2} + 4.\left( {x – 3y} \right) + {\left( {x – 5} \right)^2} + 1979\\
= \left[ {{{\left( {x – 3y} \right)}^2} + 4.\left( {x – 3y} \right) + 4} \right] + {\left( {x – 5} \right)^2} + 1975\\
= \left[ {{{\left( {x – 3y} \right)}^2} + 2.\left( {x – 3y} \right).2 + {2^2}} \right] + {\left( {x – 5} \right)^2} + 1975\\
= {\left[ {\left( {x – 3y} \right) + 2} \right]^2} + {\left( {x – 5} \right)^2} + 1975\\
= {\left( {x – 3y + 2} \right)^2} + {\left( {x – 5} \right)^2} + 1975\\
{\left( {x – 3y + 2} \right)^2} \ge 0,\,\,\,\,\forall x,y\\
{\left( {x – 5} \right)^2} \ge 0,\,\,\,\forall x\\
\Rightarrow {\left( {x – 3y + 2} \right)^2} + {\left( {x – 5} \right)^2} + 1975 \ge 1975,\,\,\,\,\forall x,y\\
\Rightarrow E \ge 1975,\,\,\,\forall x,y\\
\Rightarrow {E_{\min }} = 1975 \Leftrightarrow \left\{ \begin{array}{l}
{\left( {x – 3y + 2} \right)^2} = 0\\
{\left( {x – 5} \right)^2} = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x – 3y + 2 = 0\\
x = 5
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 5\\
y = \dfrac{7}{3}
\end{array} \right.
\end{array}\)
x = 5\\
y = \dfrac{7}{3}
\end{array} \right.\)