# Toán Lớp 7: Cho b^2=ac (b+c khác 0) Chứng minh: $\frac{ (a+b)^{2021} }{ (b+c)^{2021} }$=$\frac{ a^{2021}+ b^{2021} }{b^{2021}+c^{2021}}$

Toán Lớp 7: Cho b^2=ac (b+c khác 0)
Chứng minh: $\frac{ (a+b)^{2021} }{ (b+c)^{2021} }$=$\frac{ a^{2021}+ b^{2021} }{b^{2021}+c^{2021}}$

### 0 bình luận về “Toán Lớp 7: Cho b^2=ac (b+c khác 0) Chứng minh: $\frac{ (a+b)^{2021} }{ (b+c)^{2021} }$=$\frac{ a^{2021}+ b^{2021} }{b^{2021}+c^{2021}}$”

1. $\\$
b^2=ac(b+c\ne 0)
<=>b.b=a.c
<=> b/a=c/b (*)
Đặt (*) =k(k\ne 0)
<=>b=ak, c=bk
(a+b)^{2021}/(b+c)^{2021}
=(a+ak)^{2021}/(b+bk)^{2021}
=(a(1+k))^{2021}/(b(1+k))^{2021}
=(a^{2021}(1+k)^{2021})/(b^{2021}(1+k)^{2021})
=a^{2021}/b^{2021}(1)
(a^{2021}+b^{2021})/(b^{2021}+c^{2021})
=(a^{2021}+a^{2021}k^{2021})/(b^{2021}+b^{2021}k^{2021})
=(a^{2021}(1+k^{2021}))/(b^{2021}(1+k^{2021}))
=a^{2021}/b^{2021}(2)
(1)(2)=>đpcm

Trả lời
2. $\quad b^2 = ac\qquad (b+c\ne 0)$
$\Leftrightarrow \dfrac{a}{b} = \dfrac{b}{c}$
Đặt $\dfrac{a}{b} = \dfrac{b}{c} = k$
$\Rightarrow \begin{cases}a = kb\\b = kc\end{cases}$
Ta được:
$\bullet\quad \dfrac{(a+b)^{2021}}{(b+c)^{2021}}$
$= \dfrac{(kb + b)^{2021}}{(kc + c)^{2021}}$
$= \dfrac{b^{2021}(k+1)^{2021}}{c^{2021}(k+1)^{2021}}$
$= \dfrac{b^{2021}}{c^{2021}}$
$\bullet\quad \dfrac{a^{2021} + b^{2021}}{b^{2021} + c^{2021}}$
$= \dfrac{(kb)^{2021} + b^{2021}}{(kc)^{2021} + c^{2021}}$
$= \dfrac{b^{2021}(k^{2021} + 1)}{c^{2021}(k^{2021} + 1)}$
$= \dfrac{b^{2021}}{c^{2021}}$
Vậy $\dfrac{(a+b)^{2021}}{(b+c)^{2021}} = \dfrac{a^{2021} + b^{2021}}{b^{2021} + c^{2021}}$

Trả lời