$4x^2+4x-|2x+1|\ge 5 \ (*)$ Đặt $|2x+1| =t\ (t\ge 0) → t^2=4x^2+4x+1$ $(*)↔t^2-1-t\ge 5$ \(↔ \left[ \begin{array}{l}t\le -2 \ (ktm)\\t\ge 3\ ™\end{array} \right.\) $↔ |2x+1|\ge 3$ \(↔\left[ \begin{array}{l}2x+1\le -3\\2x+1\ge 3\end{array} \right.\) \(↔\left[ \begin{array}{l}2x\le -4\\2x\ge 2\end{array} \right.\) \(↔\left[ \begin{array}{l}x\le -2\\x\ge 1\end{array} \right.\) Vậy $S=(-\infty;-2]\cup [1;+\infty)$ Trả lời
0 bình luận về “Toán Lớp 12: Giải BPT: $4x^2+4x-|2x+1| \ge 5$”