Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: giải pt sau cos bình 3x=3/4 tìm min max hàm số y=4/căn3 sinx+cosx

Toán Lớp 11: giải pt sau
cos bình 3x=3/4
tìm min max hàm số
y=4/căn3 sinx+cosx

Comments ( 1 )

  1. Giải đáp:
    $\begin{array}{l}
    a){\cos ^2}3x = \dfrac{3}{4}\\
     \Leftrightarrow \cos 3x =  \pm \dfrac{{\sqrt 3 }}{2}\\
     \Leftrightarrow \left[ \begin{array}{l}
    \cos 3x = \cos \dfrac{\pi }{6}\\
    \cos 3x = \cos \dfrac{{5\pi }}{6}
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    3x =  \pm \dfrac{\pi }{6} + k2\pi \\
    3x =  \pm \dfrac{{5\pi }}{6} + k2\pi 
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x =  \pm \dfrac{\pi }{{18}} + \dfrac{{k2\pi }}{3}\\
    x =  \pm \dfrac{{5\pi }}{{18}} + \dfrac{{k2\pi }}{3}
    \end{array} \right.\\
    Vay\,x =  \pm \dfrac{\pi }{{18}} + \dfrac{{k2\pi }}{3};x =  \pm \dfrac{{5\pi }}{{18}} + \dfrac{{k2\pi }}{3}\\
    b)y = \dfrac{4}{{\sqrt {3\sin x + \cos x} }}\\
     = \dfrac{{\dfrac{4}{{\sqrt {10} }}}}{{\sqrt {\dfrac{3}{{\sqrt {10} }}\sin x + \dfrac{1}{{\sqrt {10} }}\cos x} }}\\
     = \dfrac{4}{{\sqrt {10} }}.\dfrac{1}{{\sqrt {\sin \left( {x + \arcsin \left( {\dfrac{3}{{\sqrt {10} }}} \right)} \right)} }}\\
    Do:0 < \sqrt {\sin \left( {x + \arcsin \left( {\dfrac{3}{{\sqrt {10} }}} \right)} \right)}  \le 1\\
     \Leftrightarrow \dfrac{1}{{\sqrt {\sin \left( {x + \arcsin \left( {\dfrac{3}{{\sqrt {10} }}} \right)} \right)} }} \ge 1\\
     \Leftrightarrow \dfrac{4}{{\sqrt {10} }}.\dfrac{1}{{\sqrt {\sin \left( {x + \arcsin \left( {\dfrac{3}{{\sqrt {10} }}} \right)} \right)} }} \ge \dfrac{4}{{\sqrt {10} }}\\
     \Leftrightarrow y \ge \dfrac{{2\sqrt {10} }}{5}\\
     \Leftrightarrow \min y = \dfrac{{2\sqrt {10} }}{5}\,\\
    Khi:\sin \left( {x + \arcsin \left( {\dfrac{3}{{\sqrt {10} }}} \right)} \right) = 1\\
     \Leftrightarrow \left( {x + \arcsin \left( {\dfrac{3}{{\sqrt {10} }}} \right)} \right) = \dfrac{\pi }{2} + k2\pi \\
     \Leftrightarrow x = \dfrac{\pi }{2} – \arcsin \left( {\dfrac{3}{{\sqrt {10} }}} \right) + k2\pi 
    \end{array}$

Leave a reply

222-9+11+12:2*14+14 = ? ( )