Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: tìm Min: F=x^2-2xy+6y^2-12x+12y+45

Toán Lớp 8: tìm Min: F=x^2-2xy+6y^2-12x+12y+45

Comments ( 2 )

  1. F=x² – 2xy + 6y² – 12x + 12y + 45
    =x² – 2xy + y² + 5y² –  12(x-y) + 45
    =(x-y)² – 12(x-y)  + 36 + 5y² + 9
    =(x-y-6)² + 5y² + 9
    Ta có: (x-y-6)² + 5y² ≥ 0
    ⇔(x-y-6)² + 5y² +9 ≥ 9
    hay F ≥ 9
    $Min_{F}$=9
    Dấu bằng xảy ra khi : 
    $\left \{ {{y=0} \atop {x-y-6=0}} \right.$
    ⇔$\left \{ {{y=0} \atop {x=6}} \right.$
     

  2. Giải đáp:
    ↓↓
    Lời giải và giải thích chi tiết:
    F=x^2- 2xy + 6y^2 – 12x + 12y + 45
    =x^2- 2xy + y^2 + 5y^2 –  12(x-y) + 45
    =(x-y)^2 – 12(x-y)  + 36 + 5y^2 + 9
    =(x-y-6)^2 + 5y^2 + 9
    Ta có:
    (x-y-6)^2 + 5y^2 ≥ 0
    ⇒ (x-y-6)^2+ 5y^2 +9 ≥ 9
    \(\left[ \begin{array}{l}F ≥ 9\\Min_F=9\end{array} \right.\)
    Dấu “=” xảy ra khi:
    <=>\(\left[ \begin{array}{l}y=0\\x-y-6=0\end{array} \right.\)
    <=>\(\left[ \begin{array}{l}y=0\\x=6\end{array} \right.\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Nguyệt