$\text{ @HV }$ $\dfrac{x^2 + 2xy + y^2 – 1 }{x^2 + 2x + 1 – y^2}$ = $\dfrac{(x + y)^2 – 1^2}{(x + 1)^2 – y^2}$ = $\dfrac{(x + y – 1).(x + y + 1)}{(x + 1 – y).(x + 1 + y)}$ = $\dfrac{x + y – 1}{x + 1 – y}$ = $\dfrac{x + y – 1}{x – y + 1}$ Trả lời
$\dfrac{x^2+2xy+y^2-1}{x^2+2x+1-y^2}$ $=\dfrac{(x+y)^2-1^2}{(x+1)-y^2}$ $=\dfrac{(x+y-1)(x+y+1)}{(x+1-y)(x+1+y)}$ Có $(x+y+1)$ chung $=\dfrac{x+y-1}{x+1-y}$ $#thanhmaii2008$ Trả lời
0 bình luận về “Toán Lớp 8: Rút gọn: `(x^2 + 2xy + y – 1)/(x^2 + 2x + 1 – y^2)`”