Toán Lớp 6: ( x – 1/2 ) + ( x – 1/6 )+ ( x – 1/12 ) + ( x – 1/20 ) + …. + ( x – 1/90 ) + ( x – 1/110 ) = 12/11
(x – 1/2) + (x – 1/6) + (x – 1/12) + … + (x – 1/110) = 12/11 => (x + x + … + x) – (1/2 + 1/6 + 1/12 + … + 1/110) = 12/11 Ta có: 1/2 + 1/6 + 1/12 + … + 1/110 = 1/(1.2) + 1/(2.3) + 1/(3.4) + … + 1/(10.11) = 1 – 1/2 + 1/2 – 1/3 + .. + 1/10 – 1/11 = 1 – 1/11 = 10/11 Do đó: (x + x + … + x) – (1/2 + 1/6 + 1/12 + … + 1/110) = 12/11 => 10x – 10/11 = 12/11 => 10x = 12/11 + 10/11 => 10x = 22/11 => x = 1/5 Vậy x = 1/5
Giải đáp+Lời giải và giải thích chi tiết: (x -1/2) + ( x – 1/6 )+ ( x – 1/12 ) + ( x – 1/20 ) + …. + ( x – 1/90 ) + ( x – 1/110 ) = 12/11=> (x + x + … + x) – (1/2 + 1/6 + 1/12 + … + 1/110) = 12/11Ta có: 1/2 + 1/6 + 1/12 + … + 1/110=> = 1/(1.2) + 1/(2.3) + 1/(3.4) + … + 1/(10.11)=> = 1 – 1/2 + 1/2 – 1/3 + .. + 1/10 – 1/11=> = 1 – 1/11=> 10/11 Lại có: (x + x + … + x) – (1/2 + 1/6 + 1/12 + … + 1/110) = 12/11 => 10x – 10/11 = 12/11 => 10x = 22/11 => x =1/5 Vậy x= 1/5 $@Pipimm~$
=> (x + x + … + x) – (1/2 + 1/6 + 1/12 + … + 1/110) = 12/11
Ta có: 1/2 + 1/6 + 1/12 + … + 1/110
=> = 1/(1.2) + 1/(2.3) + 1/(3.4) + … + 1/(10.11)
=> = 1 – 1/2 + 1/2 – 1/3 + .. + 1/10 – 1/11
=> = 1 – 1/11
=> 10/11