Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Giải phương trình: `1+cot2x=(1-cos2x)/(sin^2 2x)`

Toán Lớp 11: Giải phương trình:
1+cot2x=(1-cos2x)/(sin^2 2x)

Comments ( 2 )

  1. $1+\cot \left(2x\right)=\dfrac{1-\cos \left(2x\right)}{\sin ^2\left(2x\right)}$

    $⇔1+\cot \left(2x\right)-\dfrac{1-\cos \left(2x\right)}{\sin ^2\left(2x\right)}=0$

    $⇔\dfrac{\sin ^2\left(2x\right)+\sin ^2\left(2x\right)\cot \left(2x\right)-1+\cos \left(2x\right)}{\sin ^2\left(2x\right)}=0$

    $⇔\sin ^2\left(2x\right)+\sin ^2\left(2x\right)\cot \left(2x\right)-1+\cos \left(2x\right)=0$

    $⇔\cos \left(2x\right)-\cos ^2\left(2x\right)+\left(1-\cos ^2\left(2x\right)\right)\cot \left(2x\right)=0$

    $⇔\left(1-\cos \left(2x\right)\right)\left(\cos \left(2x\right)+\cot \left(2x\right)\left(1+\cos \left(2x\right)\right)\right)=0$

    $⇔\begin{cases} 1-\cos \left(2x\right)=0\\\cos \left(2x\right)+\cot \left(2x\right)\left(1+\cos \left(2x\right)\right)=0 \end{cases}$ $⇔\begin{cases} x=k\pi \\x=\dfrac{\pi }{4}+k\pi ,\:x=k\pi +\dfrac{3\pi }{4} \end{cases}$

    $⇔\begin{cases} x=\dfrac{\pi }{4}+k\pi \\x=k\pi +\dfrac{3\pi }{4} \end{cases}$

     

  2. Giải đáp:

     

    Lời giải và giải thích chi tiết:

    ĐKXĐ $ : sin2x \neq 0 <=> x \neq \dfrac{k\pi}{2}$
    $ PT <=> sin^{2}2x + sin2xcos2x = 1 – cos2x$
    $ <=> sin2xcos2x – (1 – sin^{2}2x) + cos2x = 0$
    $ <=> sin2xcos2x – cos^{2}2x + cos2x =‘0$
    $ <=> cos2x(sin2x – cos2x + 1) = 0$
    – TH1 $ : cos2x = 0 <=> x = (2k + 1)\dfrac{\pi}{4} $
    – TH2 $:  cos2x – sin2x = 1$
    $ => sin^{2}2x + cos^{2}2x – 2sin2xcos2x = 1$
    $ <=> sin2xcos2x = 0 <=> cos2x = 0 $ (vì $ sin2x \neq 0)$
    $ <=> 2x  = (2k + 1)\dfrac{\pi}{2} <=> x = (2k + 1)\dfrac{\pi}{4}$

     

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Dương