Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 9: Cho P = $\frac{x}{(\sqrt{x}+\sqrt{y})(1-\sqrt{y})}$ – $\frac{y}{(\sqrt{x}+\sqrt{y})(\sqrt{x}+1)}$- $\frac{xy}{(\sqrt{x}+1)(1-\sqrt{y})

Toán Lớp 9: Cho P = $\frac{x}{(\sqrt{x}+\sqrt{y})(1-\sqrt{y})}$ – $\frac{y}{(\sqrt{x}+\sqrt{y})(\sqrt{x}+1)}$- $\frac{xy}{(\sqrt{x}+1)(1-\sqrt{y})}$
a) Tìm điều kiện x,y để P xác định
b) Tìm x,y $\in$ Z để P = 2

Comments ( 1 )

  1. Giải đáp + Lời giải và giải thích chi tiết:
    $a.$ ĐKXĐ :
    +) $x ≥ 0 , y ≥ 0$
    +) $( \sqrt[]{x} + \sqrt[]{y} )( 1 – \sqrt[]{y} ) \ne 0 $
    +) $( \sqrt[]{x} + \sqrt[]{y} )( \sqrt[]{x} + 1 ) \ne 0$
    Vì $\sqrt[]{x} + 1 \ne 0$ với $∀ x ≥ 0$
    ⇒ $\sqrt[]{x} + \sqrt[]{y} \ne 0$
    ⇒ $x \ne y \ne 0$
    $+) ( \sqrt[]{x} + 1 )( 1 – \sqrt[]{y} ) \ne 0$
    Vì $\sqrt[]{x} + 1 \ne 0$ với $∀ x ≥ 0$
    ⇒ $1 – \sqrt[]{y} \ne 0$
    ⇔ $\sqrt[]{y} \ne 1$
    ⇔ $y \ne 1$
    Kết hợp các điều kiện xác định :
    ⇒ $x ≥ 0 , y ≥ 0 , x \ne y \ne 0 , y \ne 1$
    $b.$
    $P = \frac{x}{(\sqrt[]{x}+\sqrt[]{y})(1-\sqrt[]{y})} – \frac{y}{(\sqrt[]{x}+\sqrt[]{y})(\sqrt[]{x}+1)} – \frac{xy}{(\sqrt[]{x}+1)(1-\sqrt[]{y})}$
    $P = \frac{x(\sqrt[]{x}+1)-y(1-\sqrt[]{y})-xy(\sqrt[]{x}+\sqrt[]{y})}{(\sqrt[]{x}+\sqrt[]{y})(1-\sqrt[]{y})(\sqrt[]{x}+1)}$
    $P = \frac{x\sqrt[]{x}+x-y+y\sqrt[]{y}-xy(\sqrt[]{x}+\sqrt[]{y})}{(\sqrt[]{x}+\sqrt[]{y})(1-\sqrt[]{y})(\sqrt[]{x}+1)}$
    $P = \frac{(\sqrt[]{x})^{3}+(\sqrt[]{y})^{3}+(x-y)-xy(\sqrt[]{x}+\sqrt[]{y})}{(\sqrt[]{x}+\sqrt[]{y})(1-\sqrt[]{y})(\sqrt[]{x}+1)}$
    $P = \frac{(\sqrt[]{x}+\sqrt[]{y})(x-\sqrt[]{xy}+y)+(\sqrt[]{x}+\sqrt[]{y})(\sqrt[]{x}-\sqrt[]{y})-xy(\sqrt[]{x}+\sqrt[]{y})}{(\sqrt[]{x}+\sqrt[]{y})(1-\sqrt[]{y})(\sqrt[]{x}+1)}$
    $P = \frac{(\sqrt[]{x}+\sqrt[]{y})(x-\sqrt[]{xy}+y+\sqrt[]{x}-\sqrt[]{y}-xy)}{(\sqrt[]{x}+\sqrt[]{y})(1-\sqrt[]{y})(\sqrt[]{x}+1)}$
    $P = \frac{x-\sqrt[]{xy}+\sqrt[]{x}-\sqrt[]{y}-xy}{(1-\sqrt[]{y})(\sqrt[]{x}+1)}$
    $P = \frac{(x+\sqrt[]{x})-(\sqrt[]{xy}+\sqrt[]{y})-(xy-y)}{(1-\sqrt[]{y})(\sqrt[]{x}+1)}$
    $P = \frac{\sqrt[]{x}(\sqrt[]{x}+1)-\sqrt[]{y}(\sqrt[]{x}+1)-y(x-1)}{(1-\sqrt[]{y})(\sqrt[]{x}+1)}$
    $P = \frac{(\sqrt[]{x}+1)(\sqrt[]{x}-\sqrt[]{y})-y(\sqrt[]{x}+1)(\sqrt[]{x}-1)}{(1-\sqrt[]{y})(\sqrt[]{x}+1)}$
    $P = \frac{(\sqrt[]{x}+1)(\sqrt[]{x}-\sqrt[]{y}-\sqrt[]{x}y+y)}{(1-\sqrt[]{y})(\sqrt[]{x}+1)}$
    $P = \frac{\sqrt[]{x}-\sqrt[]{y}-\sqrt[]{x}y+y}{1-\sqrt[]{y}}$
    $P = \frac{(\sqrt[]{x}-\sqrt[]{x}y)-(\sqrt[]{y}-y)}{1-\sqrt[]{y}}$
    $P = \frac{\sqrt[]{x}(1-y)-\sqrt[]{y}(1-\sqrt[]{y})}{1-\sqrt[]{y}}$
    $P = \frac{\sqrt[]{x}(1-\sqrt[]{y})(1+\sqrt[]{y})-\sqrt[]{y}(1-\sqrt[]{y})}{1-\sqrt[]{y}}$
    $P = \frac{(1-\sqrt[]{y})(\sqrt[]{x}+\sqrt[]{xy}-\sqrt[]{y})}{1-\sqrt[]{y}}$
    $P = \sqrt[]{x} + \sqrt[]{xy} – \sqrt[]{y}$
    Theo bài ta có : $P = 2$
    ⇔ $\sqrt[]{x} + \sqrt[]{xy} – \sqrt[]{y} = 2$
    ⇔ $\sqrt[]{x}( 1 + \sqrt[]{y} ) – ( \sqrt[]{y} + 1 ) = 1$
    ⇔ $( \sqrt[]{y} + 1 )( \sqrt[]{x} – 1 ) = 1$
    ⇔ $\sqrt[]{x} – 1 = \frac{1}{\sqrt[]{y}+1}$
    Vì $\sqrt[]{y} + 1 ≥ 1$ với $∀ y ≥ 0$
    ⇒ $\frac{1}{\sqrt[]{y}+1} ≤ 1$
    ⇒ $\sqrt[]{x} – 1 ≤ 1$
    Vì $\sqrt[]{x} – 1 ≥ – 1$ với $∀ x ≥ 0$
    ⇒ $- 1 ≤ \sqrt[]{x} – 1 ≤ 1$
    ⇔ $0 ≤ \sqrt[]{x} ≤ 2$
    ⇔ $0 ≤ x ≤ 4$
    Vì $x ∈ Z$
    ⇒ $x =$ {$0 , 1 , 2 , 3 , 4$}
    +) $x = 0 ⇒ – \sqrt[]{y} – 1 = 1 ⇔ \sqrt[]{y} = – 2$
    ⇒ Loại
    +) $x = 1 ⇒ ( \sqrt[]{y} + 1 )( 1 – 1 ) = 1 ⇔ ( \sqrt[]{y} + 1 ).0 = 1$
    ⇒ Loại
    +) $x = 2 ⇒ ( \sqrt[]{y} + 1 )( \sqrt[]{2} – 1 ) = 1$
    ⇔ $\sqrt[]{y} + 1 = \frac{1}{\sqrt[]{2}-1}$
    ⇔ $\sqrt[]{y} + 1 = 1 + \sqrt[]{2}$
    ⇔ $\sqrt[]{y} = \sqrt[]{2}$
    ⇔ $y = 2$
    +) $x = 3 ⇒ ( \sqrt[]{y} + 1 )( \sqrt[]{3} – 1 ) = 1$
    ⇔ $\sqrt[]{y} + 1 = \frac{1}{\sqrt[]{3}-1}$
    ⇔ $\sqrt[]{y} + 1 = \frac{1+\sqrt[]{3}}{2}$
    ⇔ $\sqrt[]{y} = \frac{-1+\sqrt[]{3}}{2}$
    ⇔ $y = \frac{2-\sqrt[]{3}}{2}$
    ⇒ Loại vì $y ∈ Z$
    +) $x = 4 ⇒ ( \sqrt[]{y} + 1 )( 2 – 1 ) = 1$
    ⇔ $\sqrt[]{y} + 1 = 1$
    ⇔ $\sqrt[]{y} = 0$
    ⇔ $y = 0$
    Kết hợp các trường hợp ⇒ $( x , y ) = ( 2 , 2 ) ; ( 4 , 0 )$

Leave a reply

222-9+11+12:2*14+14 = ? ( )