Lời giải và giải thích chi tiết+Giải đáp: k) (x+3)(2x-1)=(x+3)(x-2) <=>(x+3)(2x-1)-(x+3)(x-2)=0 <=>(x+3)(2x-1-x+2)=0 <=>(x+3)(x+1)=0 <=> \(\left[ \begin{array}{l}x+3=0\\x+1=0\end{array} \right.\) <=>\(\left[ \begin{array}{l}x=-3\\x=-1\end{array} \right.\) Vậy: S={-3;-1} m) x^2-4x+4=(2-x)(3x+1) <=>(x-2)^2=(2-x)(3x+1) <=>(x-2)(x-2)-(2-x)(3x+1)=0 <=>(x-2)(x-2)+(x-2)(3x+1)=0 <=>(x-2)(x-2+3x+1)=0 <=>(x-2)(4x-1)=0 <=>\(\left[ \begin{array}{l}x-2=0\\4x-1=0\end{array} \right.\) <=>\(\left[ \begin{array}{l}x=2\\x=1/4\end{array} \right.\) Vậy: S={2;1/4} Trả lời
Giải đáp + Lời giải và giải thích chi tiết: k) $(x + 3)(2x – 1) = (x + 3)(x – 2)$$\Leftrightarrow (x + 3)(2x – 1) – (x + 3)(x – 2) = 0$ $\Leftrightarrow (x + 3)(2x – 1 – x + 2) = 0$ $\Leftrightarrow (x + 3)(x + 1) = 0$ $\Leftrightarrow$ \(\left[ \begin{array}{l}x+3=0\\x+1=0\end{array} \right.\) $\Leftrightarrow$ \(\left[ \begin{array}{l}x=-3\\x=-1\end{array} \right.\) Vậy S = {-3; -1} m) $x^2 – 4x + 4 = (2 – x)(3x + 1)$ $(x – 2)(x – 2) = (2 – x)(3x + 1)$ $(x – 2)(x – 2) = (x – 2)(-3x – 1)$$(x – 2)(x – 2 + 3x + 1) = 0$ $(x – 2)(4x – 1) = 0$ $\Leftrightarrow$ \(\left[ \begin{array}{l}x-2=0\\4x-1=0\end{array} \right.\) $\Leftrightarrow$ \(\left[ \begin{array}{l}x=2\\x=\dfrac{1}{4}\end{array} \right.\) Vậy S = {2; 1/4} Trả lời
$\Leftrightarrow (x + 3)(2x – 1) – (x + 3)(x – 2) = 0$
$(x – 2)(x – 2 + 3x + 1) = 0$