Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Giải phương trình : $3x^{2}$ + $x^{}$ – $6^{}$ – $\sqrt[]{2}$ = $0^{}$

Toán Lớp 8: Giải phương trình :
$3x^{2}$ + $x^{}$ – $6^{}$ – $\sqrt[]{2}$ = $0^{}$

Comments ( 2 )

  1. 3 x^2 + x – 6 – sqrt(2) = 0

    ⇔3 x^2 + x = 6 + sqrt(2)

    ⇔3 (x + 1/6)^2 + 1/12 (12 (-6 – sqrt(2)) – 1) = 0

    $⇔3\left(x+\dfrac{1}{6}\right)^2+\dfrac{1}{12}\left(12\left(-6-\sqrt{2}\right)-1\right)-\dfrac{1}{12}\left(12\left(-6-\sqrt{2}\right)-1\right)=0-\dfrac{1}{12}\left(12\left(-6-\sqrt{2}\right)-1\right)$

    $⇔3\left(x+\dfrac{1}{6}\right)^2=-\dfrac{12\left(-6-\sqrt{2}\right)-1}{12}$

    $⇔\dfrac{3\left(x+\dfrac{1}{6}\right)^2}{3}=\dfrac{-\dfrac{12\left(-6-\sqrt{2}\right)-1}{12}}{3}$

    $⇔\left(x+\dfrac{1}{6}\right)^2=-\dfrac{-73-12\sqrt{2}}{36}$

    \(⇔\left[ \begin{array}{l}\left(x+\dfrac{1}{6}\right)^2=\sqrt{-\dfrac{-73-12\sqrt{2}}{36}}\\\left(x+\dfrac{1}{6}\right)^2=-\sqrt{-\dfrac{-73-12\sqrt{2}}{36}}\end{array} \right.\) \(⇔\left[ \begin{array}{l}x=\sqrt{2}\\x=-\dfrac{3\sqrt{2}+1}{3}\end{array} \right.\) 

    $\text{Vậy pt có nghiệm {$\sqrt{2}$ ; $-\dfrac{3\sqrt{2}+1}{3}$}}$

  2. Giải đáp:

    $x=\sqrt{2}$ hoăc $x=-\dfrac{3\sqrt{2}+1}{3}$

    Lời giải và giải thích chi tiết:

    $3x^2+x-6-\sqrt{2}=0\\⇔3x^2-3\sqrt{2}x+3\sqrt{2}x+x-6-\sqrt{2}=0\\⇔(3x^2-3\sqrt{2}x)+[(3\sqrt{2}+1)x-(6+\sqrt{2})]=0\\⇔3x(x-\sqrt{2})+[(3\sqrt{2}+1)x-\sqrt{2}(3\sqrt{2}+1)]=0\\⇔3x(x-\sqrt{2})+(3\sqrt{2}+1)(x-\sqrt{2})=0\\⇔(x-\sqrt{2})[3x+(3\sqrt{2}+1)]=0\\⇔\left[\begin{array}{l}x-\sqrt{2}=0\\3x+3\sqrt{2}+1=0\end{array}\right.\\⇔\left[\begin{array}{l}x=\sqrt{2}\\x=-\dfrac{3\sqrt{2}+1}{3}\end{array}\right.$

    Vậy $x=\sqrt{2}$ hoăc $x=-\dfrac{3\sqrt{2}+1}{3}$

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Khánh Ly