Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 6: ) Cho A = 1 + 3 + 32 + 33 + … + 3101. Chứng minh rằng A chia hết cho 13

Toán Lớp 6: ) Cho A = 1 + 3 + 32 + 33 + … + 3101. Chứng minh rằng A chia hết cho 13

Comments ( 2 )

  1. Giải đáp:
    $A\ \vdots\ 13$.
    Lời giải và giải thích chi tiết:
    A có $(101-0):1+1=102$. Và $102\ \vdots\ 3$.
    $A=1+3+3^2+3^3\ +\,.\!.\!.+\ 3^{101}\\\Rightarrow A=(1+3+3^2)+(3^3+3^4+3^5)\ +\,.\!.\!.+\ (3^{99}+3^{100}+3^{101})\\\Rightarrow A=13+3^3.\!(1+3+3^2)\ +\,.\!.\!.+\ 3^{99}.\!(1+3+3^2)\\\Rightarrow A=13+3^3.13\ +\,.\!.\!.+\ 3^{99}.13\\\Rightarrow A=13.(1+3^3\ +\,.\!.\!.+\ 3^{99})\ \vdots\ 13$
    Vậy $A\ \vdots\ 13$.

  2. 1 + 3 + 3^2+3^3 + … + 3^101
    =(1+3+3^2)+(3^3+3^4+3^5)+..+(3^99+3^100+3^101)
    =1.(1+3+9)+3^3.(1+3+9)+…+3^99.(1+3+9)
    =(1+3^3+…+3^99).(1+3+9)
    =(1+3^3+…+3^99).13 $\vdots$ 13 (ĐPCM)
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )