Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 12: \lim _{x\to 0}\left(\frac{\sqrt[5]{1+10x}-\sqrt[3]{1+3x}}{\arcsin \left(3x+x^2\right)-\tan \left(2x+x^3\right)}\right) toán cao cấp giú

Toán Lớp 12: \lim _{x\to 0}\left(\frac{\sqrt[5]{1+10x}-\sqrt[3]{1+3x}}{\arcsin \left(3x+x^2\right)-\tan \left(2x+x^3\right)}\right)
toán cao cấp giúp mình với ạ:<

Comments ( 1 )

  1. Giải đáp:
    \(\lim\limits_{x\to 0}\dfrac{\sqrt[5]{1+10x}-\sqrt[3]{1+3x}}{\arcsin \left(3x+x^2\right)-\tan \left(2x+x^3\right)}= 1\) 
    Lời giải và giải thích chi tiết:
    \(\begin{array}{l}
    \quad\lim\limits_{x\to 0}\dfrac{\sqrt[5]{1+10x}-\sqrt[3]{1+3x}}{\arcsin \left(3x+x^2\right)-\tan \left(2x+x^3\right)}\\
    \text{Áp dụng vô cùng bé tương đương khi $x\to 0$ ta được:}\\
    \sqrt[5]{1 + 10x} = (1 + 10x)^{\tfrac15} \sim \dfrac15\cdot 10x = 2x\\
    \sqrt[3]{1 + 3x} = (1 + 3x)^{\tfrac13} \sim \dfrac13\cdot 3x = x\\
    \arcsin(3x + x^2) \sim 3x + x^2\\
    \tan(2x + x^3)\sim 2x + x^3\\
    x^2\sim 0\\
    x^3 \sim 0\\
    \text{Khi đó:}\\
    \quad\lim\limits_{x\to 0}\dfrac{\sqrt[5]{1+10x}-\sqrt[3]{1+3x}}{\arcsin \left(3x+x^2\right)-\tan \left(2x+x^3\right)}\\
    = \lim\limits_{x\to 0}\dfrac{2x – x}{3x  -2x}\\
    = \lim\limits_{x\to 0}\dfrac{x}{x}\\
    = 1
    \end{array}\) 

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Thanh Tú