Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Số nghiệm của phương trình 2cos2x+1=0 trong khoảng(0:pi/2) là

Toán Lớp 11: Số nghiệm của phương trình 2cos2x+1=0 trong khoảng(0:pi/2) là

Comments ( 2 )

  1. ~rai~
    \(2\cos x+1=0\\\Leftrightarrow 2\cos x=-1\\\Leftrightarrow \cos x=-\dfrac{1}{2}\\\Leftrightarrow \left[\begin{array}{I}2x=\dfrac{2\pi}{3}+k2\pi\\2x=-\dfrac{2\pi}{3}+k2\pi\end{array}\right.\\\Leftrightarrow \left[\begin{array}{I}x_1=\dfrac{\pi}{3}+k\pi\\x_2=-\dfrac{\pi}{3}+k\pi.\end{array}\right.\quad(k\in\mathbb{Z})\\\text{Do x}\in\left(0;\dfrac{\pi}{2}\right)\quad nên\\TH1:0<x_1<\dfrac{\pi}{2}\\\Leftrightarrow 0<\dfrac{\pi}{3}+k\pi<\dfrac{\pi}{2}\\\Leftrightarrow -\dfrac{\pi}{3}<k\pi<\dfrac{\pi}{6}\\\Leftrightarrow -\dfrac{1}{3}<k<\dfrac{1}{6}\\\text{Do k}\in\mathbb{Z}\Rightarrow k=0\Rightarrow x=\dfrac{\pi}{3}.\\TH2:0<x_2<\dfrac{\pi}{2}\\\Leftrightarrow 0<-\dfrac{\pi}{3}+k\pi<\dfrac{\pi}{2}\\\Leftrightarrow \dfrac{\pi}{3}<k\pi<\dfrac{5\pi}{6}\\\Leftrightarrow \dfrac{1}{3}<k<\dfrac{5}{6}\\\text{Do k}\in\mathbb{Z}\Rightarrow k\in\varnothing\\\Rightarrow \text{Không tồn tại x thỏa mãn.}\\\text{Vậy phương trình có  nghiệm duy nhất trong khoảng }\left(0;\dfrac{\pi}{2}\right)\quad\text{là x=}\dfrac{\pi}{3}.\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )