Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: sinx.tan2x +1 = sinx +tan 2x ????

Toán Lớp 11: sinx.tan2x +1 = sinx +tan 2x ????

Comments ( 2 )

  1. Giải đáp:
    \(\left[\begin{array}{l}x = \dfrac{\pi}{8} + k\dfrac{\pi}{2}\\x = \dfrac{\pi}{2} + k2\pi\end{array}\right.\quad (k\in\Bbb Z)\) 
    Lời giải và giải thích chi tiết:
    \(\begin{array}{l}
    \quad \sin x.\tan2x + 1= \sin x + \tan2x\qquad (*)\\
    ĐK:\ \cos2x \ne 0 \Leftrightarrow x \ne \dfrac{\pi}{4} + \dfrac{n\pi}{2}\\
    (*) \Leftrightarrow \sin x.\tan2x – \tan2x + 1 – \sin x = 0\\
    \Leftrightarrow \tan2x(\sin x – 1) – (\sin x – 1) = 0\\
    \Leftrightarrow (\tan2x – 1)(\sin x – 1) =0\\
    \Leftrightarrow \left[\begin{array}{l}\tan2x = 1\\\sin x = 1\end{array}\right.\\
    \Leftrightarrow \left[\begin{array}{l}2x = \dfrac{\pi}{4} + k\pi\\x = \dfrac{\pi}{2} + k2\pi\end{array}\right.\\
    \Leftrightarrow \left[\begin{array}{l}x = \dfrac{\pi}{8} + k\dfrac{\pi}{2}\\x = \dfrac{\pi}{2} + k2\pi\end{array}\right.\quad (k\in\Bbb Z)\\
    \text{Vậy phương trình có các họ nghiệm là}\ x =\dfrac{\pi}{8} + k\dfrac{\pi}{2}\ \text{và}\ x=\dfrac{\pi}{2} + k2\pi\ \text{với}\ k\in\Bbb Z
    \end{array}\)

  2. ĐK: $\cos2x\ne 0\to x\ne \dfrac{\pi}{4}+\dfrac{k\pi}{2}$
    $\sin x\tan2x-\tan2x=\sin x-1$
    $\to \tan2x(\sin x-1)=\sin x-1$
    $\to (\tan2x-1)(\sin x-1)=0$
    $\to \left[ \begin{array}{l}\tan2x=1 \\ \sin x=1\end{array} \right.$
    $\to \left[ \begin{array}{l}x=\dfrac{\pi}{8}+\dfrac{k\pi}{2} \quad(TM) \\x=\dfrac{\pi}{2}+k2\pi \quad(TM)\end{array} \right.$

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About An Kim