Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Giải phương trình sin(x-pi/4)=-cos(2x+pi/3)

Toán Lớp 11: Giải phương trình sin(x-pi/4)=-cos(2x+pi/3)

Comments ( 2 )

  1. ~rai~
    \(\sin\left(x-\dfrac{\pi}{4}\right)=-\cos\left(2x+\dfrac{\pi}{3}\right)\\\Leftrightarrow \cos\left[\dfrac{\pi}{2}-\left(x-\dfrac{\pi}{4}\right)\right]=\cos\left[\pi-\left(2x-\dfrac{\pi}{3}\right)\right]\\\Leftrightarrow \cos\left(\dfrac{3\pi}{4}-x\right)=\cos\left(\dfrac{2\pi}{3}-2x\right)\\\Leftrightarrow \left[\begin{array}{I}\dfrac{3\pi}{4}-x=\dfrac{2\pi}{3}-2x+k2\pi\\\dfrac{3\pi}{4}-x=2x-\dfrac{2\pi}{3}+k2\pi\end{array}\right.\\\Leftrightarrow \left[\begin{array}{I}x=-\dfrac{\pi}{12}+k2\pi\\3x=\dfrac{17\pi}{12}+k2\pi\end{array}\right.\\\Leftrightarrow \left[\begin{array}{I}x=-\dfrac{\pi}{12}+k2\pi\\x=\dfrac{17\pi}{36}+k\dfrac{2\pi}{3}.\end{array}\right.\quad(k\in\mathbb{Z})\\\text{Vậy S=}\left\{-\dfrac{\pi}{12}+k2\pi;\dfrac{17\pi}{36}+k\dfrac{2\pi}{3}\Big|k\in\mathbb{Z}\right\}.\)

  2. $\begin{array}{l} \sin \left( {x – \dfrac{\pi }{4}} \right) =  – \cos \left( {2x + \dfrac{\pi }{3}} \right)\\  \Leftrightarrow \sin \left( {x – \dfrac{\pi }{4}} \right) = \cos \left( {2x + \pi  + \dfrac{\pi }{3}} \right)\\  \Leftrightarrow \sin \left( {x – \dfrac{\pi }{4}} \right) = \cos \left( {2x + \dfrac{{4\pi }}{3}} \right)\\  \Leftrightarrow \sin \left( {x – \dfrac{\pi }{4}} \right) = \cos \left[ {\dfrac{\pi }{2} – \left( { – \dfrac{{5\pi }}{6} – 2x} \right)} \right]\\  \Leftrightarrow \sin \left( {x – \dfrac{\pi }{4}} \right) = \sin \left( { – \dfrac{{5\pi }}{6} – 2x} \right)\\  \Leftrightarrow \sin \left( {x – \dfrac{\pi }{4}} \right) = \sin \left( { – \dfrac{{5\pi }}{6} – 2x} \right)\\  \Leftrightarrow \left[ \begin{array}{l} x – \dfrac{\pi }{4} =  – \dfrac{{5\pi }}{6} – 2x + k2\pi \\ x – \dfrac{\pi }{4} = \pi  – \left( { – \dfrac{{5\pi }}{6} – 2x} \right) + k2\pi  \end{array} \right.\\  \Leftrightarrow \left[ \begin{array}{l} 3x =  – \dfrac{{7\pi }}{{12}} + k2\pi \\ x – \dfrac{\pi }{4} = \dfrac{{11\pi }}{6} + 2x + k2\pi  \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x =  – \dfrac{{7\pi }}{{36}} + \dfrac{{k2\pi }}{3}\\ x =  – \dfrac{{25\pi }}{{12}} – k2\pi  \end{array} \right.\left( {k \in \mathbb{Z}} \right) \end{array}$  

Leave a reply

222-9+11+12:2*14+14 = ? ( )