Toán Lớp 8: `(x^3+5x+5)^3+5x^3+24x+30=0` tìm `x`

Question

Toán Lớp 8: `(x^3+5x+5)^3+5x^3+24x+30=0` tìm `x`, hướng dẫn giải giúp em bài này ạ, em cảm ơn thầy cô và các bạn nhiều.

in progress 0
Hoàng Hà 2 tháng 2022-12-15T17:46:57+00:00 1 Answer 0 views 0

TRẢ LỜI ( 1 )

  1. Giải đáp:
    $S=\{-1\}$
    Lời giải và giải thích chi tiết:
    $(x^3+5x+5)^3+5x^3+24x+30=0$
    $⇔(x^3+5x+5)^3+1+5x^3+24x+29=0$
    $⇔(x^3+5x+6).[(x^3+5x+5)^2-(x^3+5x+5)+1]+5x^3+24x+29=0$
    $⇔(x^3+x^2-x^2-x+6x+6).[(x^3+5x+5)^2-(x^3+5x+5)+1]+5x^3+5x^2-5x^2-5x+29x+29=0$
    $⇔(x+1)(x^2-x+6).[(x^3+5x+5)^2-(x^3+5x+5)+1]+(x+1)(5x^2-5x+29)=0$
    $⇔(x+1).\{(x^2-x+6)[(x^3+5x+5)^2-(x^3+5x+5)+1]+(5x^2-5x+29)\}=0$
    $⇔\left[ \begin{array}{l}x+1=0\\(x^2-x+6)[(x^3+5x+5)^2-(x^3+5x+5)+1]+(5x^2-5x+29)=0\,(*)\end{array} \right.$
    $(*)⇔(x^2-x+6)[(x^3+5x+5)^2-(x^3+5x+5)+1]+(5x^2-5x+29)=0$
    Ta có: 
    $x^2-x+6=x^2-x+\dfrac{1}{4}+\dfrac{23}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0$
    $(x^3+5x+5)^2-(x^3+5x+5)+1=\left(x^3+5x+5-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0$
    $5x^2-5x+29=5\left(x^2-x+\dfrac{29}{5}\right)=5\left(x-\dfrac{1}{2}\right)+\dfrac{63}{2}>0$
    $⇒(x^2-x+6)[(x^3+5x+5)^2-(x^3+5x+5)+1]+(5x^2-5x+29)>0$
    $⇒Pt(*)$ vô nghiệm
    $⇔x+1=0$
    $⇔x=-1$
    Vậy $S=\{-1\}$.

Leave an answer

Browse

12:2+4x4-12:2-5x3 = ? ( )