Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Có bao nhiêu số chẵn gồm 6 chữ số khác nhau, trong đó chữ số đầu tiên là chữ số lẻ ?

Toán Lớp 11: Có bao
nhiêu số chẵn gồm 6 chữ số khác nhau,
trong đó chữ số đầu tiên là chữ số lẻ ?

Comments ( 1 )

  1. Gọi số cần tìm là $\overline{abcdef}$ $(a\ne 0, 0\le a,b,c,d,e,f\le 9)$
    Vì số tự nhiên có 6 chữ số khác nhau và số đầu tiên là số lẻ nên ta có:
    $a$ có $5$ cách chọn số lẻ.
    $f$ có $5$ cách chọn số chẵn
    $b$ có $8$ cách chọn, $c$ có $7$ cách chọn, $d$ có $6$ cách, $e$ có $5$ cách.
    Vậy theo quy tắc nhân ta có số số chẵn gồm 6 chữ số khác nhau, trong đó chữ số đầu tiên là chữ số lẻ là:
    $5.5.8.6.7.5=42000$ số.
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )