Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Chứng minh rằng: n³ + (n+1)³ + (n+2)³ chia hết cho 9 với mọi n ∈ N*

Toán Lớp 8: Chứng minh rằng: n³ + (n+1)³ + (n+2)³ chia hết cho 9 với mọi n ∈ N*

Comments ( 1 )

  1. Ta sẽ chứng minh n với $3$ dạng là $3k;3k+1;3k+2$
    *Với $n=3k$ :
    =>n³+(n+1)³+(n+2)³=(3k)^3 + ( 3k +1 )^3  + (3k+2)³
    Vì (3k)^3 \vdots 3 ; (3k+1)^3 chia $9$ dư $1$ ; $(3k+2)^3 $ chia $9$ dư $8$
    =>(3k)^3 + ( 3k +1 )^3  + (3k+2)³\vdots 9
    =>n³+(n+1)³+(n+2)³\vdots 9
    *Với $n=3k+1$ :
    =>n³+(n+1)³+(n+2)³=(3k+1)+(3k+2)^3 + (3k+3)^3
    Vì (3k+1)^3 chia $9$ dư $1$ ; $(3k+2)^3$ chia $9$ dư $8$ ; $(3k+3)^3 \vdots 9$
    =>(3k+1)+(3k+2)^3 + (3k+3)^3 \vdots 9
    =>n³+(n+1)³+(n+2)³\vdots 9
    *Với $n=3k+2$
    =>n³+(n+1)³+(n+2)³\vdots 9=(3k+2)^3 +(3k+3)^3 + (3k+4)^3
    Vì (3k+2)^3 chia $9$ dư $8$  ; $(3k+3)^3 \vdots 9$ ; $(3k+4)^3 $ chia $9$ dư $1$
    =>(3k+2)^3 +(3k+3)^3 + (3k+4)^3\vdots 9
    =>n³+(n+1)³+(n+2)³\vdots 9
    Từ $3$ TH trên =>n³+(n+1)³+(n+2)³\vdots 9AAn∈NN*$(đpcm)$
    Vậy n³+(n+1)³+(n+2)³\vdots 9AAn∈NN

Leave a reply

222-9+11+12:2*14+14 = ? ( )