Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: $\frac{1}{x(x+1)}$ + $\frac{1}{(x+1)(x+2)}$ + $\frac{1}{(x+2)(x+3)}$ + $\frac{1}{x+3}$ thực hiên phép cộng phân thức

Toán Lớp 8: $\frac{1}{x(x+1)}$ + $\frac{1}{(x+1)(x+2)}$ + $\frac{1}{(x+2)(x+3)}$ + $\frac{1}{x+3}$
thực hiên phép cộng phân thức

Comments ( 2 )

  1. MTC: x(x+1)(x+2)(x+3)
    QĐMT:
    1/(x(x+1)) = ((x+2)(x+3))/(x(x+1)(x+2)(x+3)) = (x^2 +5x+6)/(x(x+1)(x+2)(x+3))
    1/((x+1)(x+2)) = (x(x+3))/(x(x+1)(x+2)(x+3)) = (x^2 +3x)/(x(x+1)(x+2)(x+3))
    1/((x+2)(x+3)) = (x(x+1))/(x(x+1)(x+2)(x+3)) = (x^2 +x)/(x(x+1)(x+2)(x+3))
    1/(x+3) = (x(x+1)(x+2))/(x(x+1)(x+2)(x+3)) = (x^3 +3x^2 +2x)/(x(x+1)(x+2)(x+3))
    1/(x(x+1)) + 1/((x+1)(x+2)) + 1/((x+2)(x+3)) + 1/(x+3)
    = (x^2 +5x+6)/(x(x+1)(x+2)(x+3)) + (x^2 +3x)/(x(x+1)(x+2)(x+3)) + (x^2 +x)/(x(x+1)(x+2)(x+3)) + (x^3 +3x^2 +2x)/(x(x+1)(x+2)(x+3))
    = (x^3 +x^2 +x^2 +x^2 +3x^2 +5x+3x+x+2x+6)/(x(x+1)(x+2)(x+3))
    = (x^3 +6x^2 +11x+6)/(x(x+1)(x+2)(x+3))

  2. $\\$
    Ta có tính chất : 1/(n(n+1))=1/n-1/(n+1)
    Ta sẽ chứng minh :
    1/(n(n+1))=(n+1-n)/(n(n+1)) = (n+1)/(n(n+1)) – n/(n(n+1))=1/n – 1/(n+1)
    Vận dụng vào bài ta được :
    1/(x(x+1)) + 1/((x+1)(x+2))+1/((x+2)(x+3))+1/(x+3)
    =1/x-1/(x+1)+1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+1/(x+3)
    = 1/x

Leave a reply

222-9+11+12:2*14+14 = ? ( )