Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 7: Cho `a/b=c/d` chứng minh rằng : `d)\frac{ac}{bd}=\frac{a^2 +c^2}{b^2 +d^2}` `e)\frac{ab}{cd}=\frac{a^2 -b^2}{c^2 -d^2}`

Toán Lớp 7: Cho a/b=c/d chứng minh rằng :
d)\frac{ac}{bd}=\frac{a^2 +c^2}{b^2 +d^2}
e)\frac{ab}{cd}=\frac{a^2 -b^2}{c^2 -d^2}

Comments ( 2 )

  1. Giải đáp + Lời giải và giải thích chi tiết:
    d)
     Đặt $k = \frac{a}{b} = \frac{c}{d}$
    $\Rightarrow a = bk, c= dk$
    Ta có:
    $\frac{ac}{bd} = \frac{bkdk}{bd} = \frac{bdk^2}{bd} = k^2$
    $\frac{a^2 + c^2}{b^2 + d^2} = \frac{(bk)^2 + (dk)^2}{b^2 + d^2} = \frac{b^2k^2 + d^2k^2}{b^2 + d^2} = \frac{k^2(b^2 + d^2)}{b^2 + d^2} = k^2$
    $\Rightarrow \frac{ac}{bd} = \frac{a^2 + c^2}{b^2 + d^2} (đpcm)$
    e) Đặt $k = \frac{a}{b} = \frac{c}{d}$
    $\Rightarrow a = bk, c= dk$
    Ta có:
    $\frac{ab}{cd} = \frac{bkb}{dkd} = \frac{b^2k}{d^2k} = \frac{b^2}{d^2}$
    $\frac{a^2 – b^2}{c^2 – d^2} = \frac{(bk)^2 – b^2}{(dk^2) – d^2} = \frac{b^2k^2 – b^2}{d^2k^2 – d^2} = \frac{b^2(k^2 – 1)}{d^2(k^2 – 1)} = \frac{b^2}{d^2}$
    $\Rightarrow \frac{ab}{cd} = \frac{a^2 – b^2}{c^2 – d^2}(đpcm)$

  2. CMR:
    d, frac{ac}{bd} = frac{a^2 + c^2}{b^2 + d^2}
    Ta có:
    a/b = c/d => frac{a^2}{b^2} = frac{c^2}{d^2} = frac{a^2 + c^2}{b^2 + d^2} (1)
    Mặt ne, frac{a^2}{b^2} = a/b · a/b = a/b · c/d = frac{ac}{bd} (2)
    Từ (1) và (2)
    => frac{ac}{bd} = frac{a^2 + c^2}{b^2 + d^2}
    e, frac{ab}{cd} = frac{a^2 – b^2}{c^2 – d^2}
    Ta có:
    a/b = c/d => a/c = b/d
    a/c = b/d => frac{a^2}{c^2} = frac{b^2}{d^2} = frac{a^2 – b^2}{c^2 – d^2} (1)
    Mặt ne, frac{a^2}{c^2} = a/c · a/c = a/c · b/d = frac{ab}{cd} (2)
    Từ (1) và (2)
    => frac{ab}{cd} = frac{a^2 – b^2}{c^2 – d^2}

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Cát Linh