Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 7: Chứng minh rằng a)$16^{17}$ +$4^{33}$ +$8^{23}$ +$2^{67}$ chia hết cho 40 b)$81^{7}$ -$9^{13}$ +$12^{25}$ +$27^{9}$ -$12^{24}$ chia hế

Toán Lớp 7: Chứng minh rằng
a)$16^{17}$ +$4^{33}$ +$8^{23}$ +$2^{67}$ chia hết cho 40
b)$81^{7}$ -$9^{13}$ +$12^{25}$ +$27^{9}$ -$12^{24}$ chia hết cho 11

Comments ( 2 )

  1. Giải đáp:
    a, 16^17+4^33+8^23+2^67
    = 2^68 + 2^66 + 2^69 + 2^67
    = 2^66.(2^3+2^2+2+1)
    = 2^66 . 15
    = 2^3 . 2^63 . 15
    = 8.15.2^63
    = 120 . 2^63
    = 40.3.2^63 \vdots 40
    b, 81^7 – 9^13 + 12^25 + 27^9 – 12^24
    = (3^4)^7 – (3^2)^13 + (2^2 .3)^25 + (3^3)^9 – (2^2 .3)^24
    = 3^28 – 3^26 + 2^50 . 3^25 + 3^27 – 2^48 . 3^24
    = 3^26.(3^2 + 3 – 1) + 2^48 . 3^24.( 2^2 . 3 – 1)
    = 11 . (3^26 + 2^48 . 3^24) \vdots 11

  2. Lời giải và giải thích chi tiết:
    a.Ta có:
    $A=16^{17}+4^{33}+8^{23}+2^{67}$
    $\to A=(2^4)^{17}+(2^2)^{33}+(2^3)^{23}+2^{67}$
    $\to A=2^{4\cdot 17}+2^{2\cdot 33}+2^{3\cdot 23}+2^{67}$
    $\to A=2^{68}+2^{66}+2^{69}+2^{67}$
    $\to A=2^{66}(2^2+1+2^3+2)$
    $\to A=2^{66}\cdot 15$
    $\to A=2^{63+3}\cdot 5\cdot 3$
    $\to A=2^{63}\cdot 2^3\cdot 5\cdot 3$
    $\to A=2^{63}\cdot 8\cdot 5\cdot 3$
    $\to A=2^{63}\cdot 40\cdot 3\quad\vdots\quad 40$
    $\to đpcm$
    b.Ta có:
    $B=81^7-9^{13}+12^{25}+27^9-12^{24}$
    $\to B=(3^4)^7-(3^2)^{13}+12^{24}\cdot 12+(3^3)^9-12^{24}$
    $\to B=3^{28}-3^{26}+12^{24}\cdot 12+3^{27}-12^{24}$
    $\to B=3^{28}-3^{26}+3^{27}+12^{24}\cdot 12-12^{24}$
    $\to B=3^{26}(3^2-1+3)+12^{24}\cdot (12-1)$
    $\to B=3^{26}\cdot 11+12^{24}\cdot 11\quad\vdots\quad 11$
    $\to đpcm$

Leave a reply

222-9+11+12:2*14+14 = ? ( )