Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Giải các phương trình sau: a) $\sin(x^2-2x)=0$ b) $\tan(x^2+2x+3)=\tan 2$ c) $\cos 2x-\cos 8x+\cos 6x=1$

Toán Lớp 11: Giải các phương trình sau:
a) $\sin(x^2-2x)=0$
b) $\tan(x^2+2x+3)=\tan 2$
c) $\cos 2x-\cos 8x+\cos 6x=1$

Comments ( 2 )

  1. Giải đáp:

    a)    sin(x^2-2x)=0

    <=> x^2-2x=kpi (kinZZ)

    <=> x^2-2x+1=kpi+1 (kinZZ)

    <=> (x-1)^2=kpi+1 (kinZZ)

    <=> \(\left[ \begin{array}{l}
    x-1=\sqrt{k\pi+1}
    \\
    x-1=-\sqrt{k\pi+1}
    \end{array} \right.\) (với kinZZ)

    <=> \(\left[ \begin{array}{l}
    x=1+\sqrt{k\pi+1}
    \\
    x=1-\sqrt{k\pi+1}
    \end{array} \right.\) (với kinZZ)

    Vậy S={1+sqrt{kpi+1}; 1-sqrt{kpi+1} | kinZZ}

    b)   tan(x^2 + 2x + 3) = tan 2

    <=> x^2 + 2x + 3 = 2 – π + kπ (kinZZ)

    <=> x^2 + 2 x +1=  – π + kπ (kinZZ)

    <=> (x+1)^2=  -π + kπ (kinZZ)

    <=> \(\left[ \begin{array}{l}
    x+1=\sqrt{-π + kπ}
    \\
    x+1=-\sqrt{-π + kπ}
    \end{array} \right.\) (với kinZZ)

    <=> \(\left[ \begin{array}{l}
    x=\sqrt{-π + kπ}-1
    \\
    x=-\sqrt{-π + kπ}-1
    \end{array} \right.\) (với kinZZ)

    Vậy S={\sqrt{-π + kπ}-1; -\sqrt{-π + kπ}-1 | kinZZ}

    c)   cos2x−cos8x+cos6x=1

    <=> (cos2x-1)+(cos6x−cos8x)=0

    <=> 1-2sin^2x-1+2sin({6x+8x}/2)sin({8x-6x}/2)=0

    <=> -2sin^2x+2sin7x*sinx=0

    <=> −2sinx(sinx−sin7x)=0

    <=> 2sinx*2cos4x*sin3x=0

     <=>\(\left[ \begin{array}{l}
    2\sin x=0
    \\
    2\cos 4x=0
    \\\sin3x=0
    \end{array} \right.\) 

    <=>\(\left[ \begin{array}{l}
    x=k\pi
    \\
    4x=\frac{\pi}{2}+k\pi
    \\3x=k\pi
    \end{array} \right.\)  (kinZZ)

    <=>\(\left[ \begin{array}{l}
    x=k\pi
    \\
    x=\frac{\pi}{8}+\frac{k\pi}{4}
    \\x=\frac{k\pi}{3}
    \end{array} \right.\)  (kinZZ)

    Vậy S={kpi; pi/8+{kpi}/4; {kpi}/3 | kinZZ}

     

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Ngọc