Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: 1, sin^2x-sin2x+cos^2x-1=0 2, cos^2x-2sinxcosx-sin^2x=0 3, sin^2x-3sinxcosx=1

Toán Lớp 11: 1, sin^2x-sin2x+cos^2x-1=0
2, cos^2x-2sinxcosx-sin^2x=0
3, sin^2x-3sinxcosx=1

Comments ( 2 )

  1. Giải đáp:
    \(\begin{array}{l}
    1)\quad S = \left\{k\dfrac{\pi}{2}\ \Bigg|\ k\in\Bbb Z\right\}\\
    2)\quad S = \left\{\dfrac{\pi}{8} + k\dfrac{\pi}{2}\ \Bigg|\ k\in\Bbb Z\right\}\\
    3)\quad S = \left\{\dfrac{\pi}{2} + k\pi;\ \arctan\left(-\dfrac13\right) + k\pi\ \Bigg|\ k\in\Bbb Z\right\}\end{array}\) 
    Lời giải và giải thích chi tiết:
    \(\begin{array}{l}
    1)\\
    \quad \sin^2x -\sin2x + \cos^2x – 1 =0\\
    \Leftrightarrow \sin2x = 0\\
    \Leftrightarrow 2x = k\pi\\
    \Leftrightarrow x = k\dfrac{\pi}{2}\quad (k\in\Bbb Z)\\
    \text{Vậy}\ S = \left\{k\dfrac{\pi}{2}\ \Bigg|\ k\in\Bbb Z\right\}\\
    2)\\
    \quad \cos^2x – 2\sin x\cos x -\sin^2x = 0\\
    \Leftrightarrow \cos2x – \sin2x = 0\\
    \Leftrightarrow \sqrt\cos\left(2x + \dfrac{\pi}{4}\right)=0\\
    \Leftrightarrow 2x + \dfrac{\pi}{4} = \dfrac{\pi}{2} + k\pi\\
    \Leftrightarrow x = \dfrac{\pi}{8} + k\dfrac{\pi}{2}\quad (k\in\Bbb Z)\\
    \text{Vậy}\ S = \left\{\dfrac{\pi}{8} + k\dfrac{\pi}{2}\ \Bigg|\ k\in\Bbb Z\right\}
    3)\\
    \quad \sin^2x -3\sin x\cos x = 1\qquad (2)\\
    \bullet\quad \cos x = 0\Leftrightarrow x = \dfrac{\pi}{2} + k\pi\quad (k\in\Bbb Z)\\
    (*) \Leftrightarrow \sin^2x = 1\\
    \Leftrightarrow \sin x = \pm 1\\
    \Leftrightarrow x = \dfrac{\pi}{2} + k\pi\quad (k\in\Bbb Z)\\
    \Rightarrow x = \dfrac{\pi}{2} + k\pi\ \text{là một họ nghiệm của $(1)$}\\
    \bullet\quad \cos x \ne 0\\
    \text{Chia hai vế của phương trình cho $\cos^2x$ ta được:}\\
    \quad \tan^2x – 3\tan x = \dfrac{1}{\cos^2x}\\
    \Leftrightarrow \tan^2x – 3\tan x = \tan^2 x+  1\\
    \Leftrightarrow \tan x = -\dfrac13\\
    \Leftrightarrow x = \arctan\left(-\dfrac13\right) + k\pi\quad (k\in\Bbb Z)\\
    \text{Vậy}\ S = \left\{\dfrac{\pi}{2} + k\pi;\ \arctan\left(-\dfrac13\right) + k\pi\ \Bigg|\ k\in\Bbb Z\right\}\end{array}\) 

  2. $\begin{array}{l} 1){\sin ^2}x – \sin 2x + {\cos ^2}x – 1 = 0\\  \Leftrightarrow \left( {{{\sin }^2}x + {{\cos }^2}x} \right) – 1 – \sin 2x = 0\\  \Leftrightarrow 1 – 1 – \sin 2x = 0\\  \Leftrightarrow \sin 2x = 0\\  \Leftrightarrow 2x = k\pi  \Leftrightarrow x = \dfrac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\\ 2){\cos ^2}x – {\sin ^2}x – 2\sin x\cos x = 0\\  \Leftrightarrow \cos 2x – \sin 2x = 0\\  \Leftrightarrow \sqrt 2 \cos \left( {2x + \dfrac{\pi }{4}} \right) = 0\\  \Leftrightarrow \cos \left( {2x + \dfrac{\pi }{4}} \right) = 0\\  \Leftrightarrow 2x + \dfrac{\pi }{4} = \dfrac{\pi }{2} + k\pi \\  \Leftrightarrow 2x = \dfrac{\pi }{4} + k\pi \\  \Leftrightarrow x = \dfrac{\pi }{8} + \dfrac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\\ 3){\sin ^2}x – 3\sin x\cos x = 1\\  \Leftrightarrow {\sin ^2}x – 1 – 3\sin x\cos x = 0\\  \Leftrightarrow {\sin ^2}x – {\sin ^2}x – {\cos ^2}x – 3\sin x\cos x = 0\\  \Leftrightarrow  – {\cos ^2}x – 3\sin x\cos x = 0\\  \Leftrightarrow \cos x\left( {\cos x + 3\sin x} \right) = 0\\  \Leftrightarrow \left[ \begin{array}{l} \cos x = 0\\ \cos x + 3\sin x = 0 \end{array} \right.\\  \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{2} + k\pi \\ \sqrt {10} \left( {\dfrac{1}{{\sqrt {10} }}\cos x + \dfrac{3}{{\sqrt {10} }}\sin x} \right) = 0 \end{array} \right.\\  \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{2} + k\pi \\ \sqrt {10} \sin \left( {x + \alpha } \right) = 0\left( {\alpha  = \arccos \dfrac{3}{{\sqrt {10} }}} \right) \end{array} \right.\\  \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{2} + k\pi \\ x + \alpha  = k\pi  \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{\pi }{2} + k\pi \\ x =  – \alpha  + k\pi  \end{array} \right.\left( {k \in \mathbb{Z}} \right) \end{array}$  

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Ayla