Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Giải các phương trình: a) 2cos2x+sinx-1=0. b)-2sinx+cosx+1

Toán Lớp 11: Giải các phương trình: a) 2cos2x+sinx-1=0. b)-2sinx+cosx+1

Comments ( 2 )

  1. \(\begin{array}{l}
    a)\quad 2\cos2x + \sin x – 1 =0\\
    \Leftrightarrow 2(1 – 2\sin^2x) + \sin x – 1 =0\\
    \Leftrightarrow 4\sin^2x – \sin x – 1 =0\\
    \Leftrightarrow \left[\begin{array}{l}
    \sin x = \dfrac{1 – \sqrt{17}}{8}\\
    \sin x = \dfrac{1 + \sqrt{17}}{8}
    \end{array}\right.\\
    \Leftrightarrow \left[\begin{array}{l}
    x = \arcsin\left(\dfrac{1 – \sqrt{17}}{8}\right) + k2\pi\\
    x = \pi – \arcsin\left(\dfrac{1 – \sqrt{17}}{8}\right) + k2\pi\\
    x = \arcsin\left(\dfrac{1 + \sqrt{17}}{8}\right) + k2\pi\\
    x = \pi – \arcsin\left(\dfrac{1 + \sqrt{17}}{8}\right) + k2\pi
    \end{array}\right.\quad (k\in\Bbb Z)\\
    \text{Vậy phương trình có các họ nghiệm là}\\
    x = \arcsin\left(\dfrac{1 – \sqrt{17}}{8}\right) + k2\pi\\
    x = \pi – \arcsin\left(\dfrac{1 – \sqrt{17}}{8}\right) + k2\pi\\
    x = \arcsin\left(\dfrac{1 + \sqrt{17}}{8}\right) + k2\pi\\
    x = \pi – \arcsin\left(\dfrac{1 + \sqrt{17}}{8}\right) + k2\pi\\
    \text{với}\ k\in\Bbb Z\\
    b)\quad -2\sin x + \cos x + 1 =0\\
    \Leftrightarrow -\dfrac{2}{\sqrt5}\sin x + \dfrac{1}{\sqrt5}\cos x = -\dfrac{1}{\sqrt5}\\
    Do\ \left(\dfrac{1}{\sqrt5}\right)^2 + \left(-\dfrac{2}{\sqrt5}\right)^2 = 1\\
    \text{Đặt}\ \begin{cases}\cos\alpha = \dfrac{1}{\sqrt5}\\\sin\alpha = \dfrac{2}{\sqrt5}\end{cases}\\
    \text{Phương trình trở thành:}\\
    \quad \cos x.\cos\alpha – \sin x.\sin\alpha = – cos\alpha\\
    \Leftrightarrow \cos(x + \alpha) = \cos\left(\pi – \alpha\right)\\
    \Leftrightarrow \left[\begin{array}{l}x + \alpha = \pi -\alpha + k2\pi\\x – \alpha =- \pi +\alpha + \dfrac{\pi}{2} + k2\pi\end{array}\right.\\
    \Leftrightarrow \left[\begin{array}{l}x = \pi – 2\alpha + k\pi\\x = -\pi + 2\alpha + k2\pi\end{array}\right.\quad (k\in\Bbb Z)\\
    \text{Vậy phương trình có họ nghiệm là}\\
    x = \pi – 2\alpha + k\pi\\
    x = -\pi + 2\alpha + k2\pi\\
    \text{với $\alpha$ thỏa mãn}\ \begin{cases}\cos\alpha = \dfrac{1}{\sqrt5}\\\sin\alpha = \dfrac{2}{\sqrt5}\end{cases}\ \text{và}\ k\in\Bbb Z
    \end{array}\)
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )