Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 9: rút gọn biểu thức A=√(1+1/1^2+1/2^2)+√(1+1/2^2+1/3^2)+…+√(1+1/2006^2+1/2007^2) / là phân số

Toán Lớp 9: rút gọn biểu thức A=√(1+1/1^2+1/2^2)+√(1+1/2^2+1/3^2)+…+√(1+1/2006^2+1/2007^2)
/ là phân số

Comments ( 1 )

  1. Giải đáp: $A=2007-\dfrac1{2007}$
    Lời giải và giải thích chi tiết:
    Xét hạng tử tổng quát:
    $1+\dfrac1{n^2}+\dfrac1{(n+1)^2}$
    $=(1+2\cdot \dfrac1n+\dfrac1{n^2})-\dfrac2n+\dfrac1{(n+1)^2}$
    $=(1+\dfrac1n)^2-\dfrac2n+\dfrac1{(n+1)^2}$
    $=(\dfrac{n+1}{n})^2-2\cdot \dfrac{n+1}n\cdot \dfrac1{n+1}+(\dfrac1{n+1})^2$
    $=(\dfrac{n+1}n-\dfrac1{n+1})^2$
    $=(1+\dfrac1n-\dfrac1{n+1})^2$
    $\to \sqrt{1+\dfrac1{n^2}+\dfrac1{(n+1)^2}}=1+\dfrac1n-\dfrac1{n+1}$
    Áp dụng ta có:
    $A=(1+\dfrac11-\dfrac12)+(1+\dfrac12-\dfrac13)+…+(1+\dfrac1{2006}-\dfrac1{2007})$
    $\to A=2006+(\dfrac11-\dfrac12+\dfrac12-\dfrac13+…+\dfrac1{2006}-\dfrac1{2007})$
    $\to A=2006+(1-\dfrac1{2007})$
    $\to A=2007-\dfrac1{2007}$

Leave a reply

222-9+11+12:2*14+14 = ? ( )