Toán Lớp 9: giải pt:`(x+(5-x)/(\sqrt{x}+1) )^2+(16\sqrt{x}(5-x))/(\sqrt{x}+1)-16=0`

Toán Lớp 9: giải pt:(x+(5-x)/(\sqrt{x}+1) )^2+(16\sqrt{x}(5-x))/(\sqrt{x}+1)-16=0

TRẢ LỜI

  1. Giải đáp và giải thích các bước giải:
    (x+{5-x}/{\sqrt[x]+1})^2+{16\sqrt[x](5-x)}/{\sqrt[x]+1}-16=0
    Có : {16\sqrt[x](5-x)}/{\sqrt[x]+1}-16
    ={16(\sqrt[x]+1)(5-x)-16(5-x)}/{\sqrt[x]+1}-16
    =-{16(5-x)}/{\sqrt[x]+1}-16x+64
    PT⇔x^2+{(5-x)^2}/{(\sqrt[x]+1)^2}+{2x(5-x)}/{\sqrt[x]+1}+64-16x-{16(5-x)}/{\sqrt[x]+1}=0
    ⇔ (x^2-16x+64)+{(5-x)^2}/{(\sqrt[x]+1)^2}+{2(x-8)(5-x)}/{\sqrt[x]+1}=0
    ⇔ (x-8)^2+{(5-x)^2}/{(\sqrt[x]+1)^2}+{2(x-8)(5-x)}/{\sqrt[x]+1}=0
    ⇔ (x-8+{5-x}/{\sqrt[x]+1})^2=0
    ⇔ x-8+{5-x}/{\sqrt[x]+1}=0
    ⇔ x-8={x-5}/{\sqrt[x]+1}
    ⇒ x-5=(x-8)(\sqrt[x]+1)
    ⇔ x-5=x\sqrt[x]+x-8\sqrt[x]-8
    ⇔ x\sqrt[x]-8\sqrt[x]-3=0
    ⇔ (\sqrt[x]-3)(x+3\sqrt[x]+1)=0
    Mà : x+3\sqrt[x]+1>0
    ⇒ \sqrt[x]-3=0
    ⇔ \sqrt[x]=3
    ⇔ x=9

    Trả lời

Viết một bình luận