Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 9: Giải phương trình sau: 10x^2 + 10y^2 + 16xy + 4y – 4x + 4 = 0

Toán Lớp 9: Giải phương trình sau:
10x^2 + 10y^2 + 16xy + 4y – 4x + 4 = 0

Comments ( 1 )

  1. $\begin{array}{l} 10{x^2} + 10{y^2} + 16xy + 4y – 4x + 4 = 0\\  \Leftrightarrow 2.\left( {5{x^2} + 5{y^2} + 8xy + 2y – 2x + 2} \right) = 0\\  \Leftrightarrow 5{x^2} + 5{y^2} + 8xy + 2y – 2x + 2 = 0\\  \Leftrightarrow \left( {4{x^2} + 8xy + 4{y^2}} \right) + \left( {{x^2} – 2x + 1} \right) + \left( {{y^2} + 2y + 1} \right) = 0\\  \Leftrightarrow \left[ {{{\left( {2x} \right)}^2} + 2.2x.2y + {{\left( {2y} \right)}^2}} \right] + \left( {{x^2} – 2.x.1 + {1^2}} \right) + \left( {{y^2} + 2.y.1 + {1^2}} \right) = 0\\  \Leftrightarrow {\left( {2x + 2y} \right)^2} + {\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} = 0\,\,\,\,\,\left( 1 \right)\\ {\left( {2x + 2y} \right)^2} \ge 0,\,\,\,\forall \,x,y\\ {\left( {x – 1} \right)^2} \ge 0,\,\,\,\forall \,x\\ {\left( {y + 1} \right)^2} \ge 0,\,\,\,\forall y\\  \Rightarrow {\left( {2x + 2y} \right)^2} + {\left( {x – 1} \right)^2} + {\left( {y + 1} \right)^2} \ge 0,\,\,\,\forall \,x,y\\ \left( 1 \right) \Rightarrow \left\{ \begin{array}{l} {\left( {2x + 2y} \right)^2} = 0\\ {\left( {x – 1} \right)^2} = 0\\ {\left( {y + 1} \right)^2} = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2x + 2y = 0\\ x – 1 = 0\\ y + 1 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 1\\ y =  – 1 \end{array} \right.\\ Vậy\,\,x = 1;\,\,y =  – 1 \end{array}$

Leave a reply

222-9+11+12:2*14+14 = ? ( )