Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 9: Giải phương trình: `x^2+4\sqrt{x-1}=2-x`

Toán Lớp 9: Giải phương trình:
x^2+4\sqrt{x-1}=2-x

Comments ( 1 )

  1. \(x^2 + 4\sqrt{x-1}=2-x \quad (*)\quad (x\ge 1)\\\Leftrightarrow 4\sqrt{x-1}=2-x-x^2\\\Leftrightarrow 4\sqrt{x-1}=-(-2+x+x^2)\\\Leftrightarrow 16(x-1)=[-(-2+x+x^2)]^2\\\Leftrightarrow 16(x-1)=(x^2 +x+2)^2\\\Leftrightarrow 16(x-1)= (x^2+2x-x-2)^2\\\Leftrightarrow 16(x-1)=[x(x+2)-(x+2)]^2\\\Leftrightarrow 16(x-1)=(x-1)^2(x+2)^2\\\Leftrightarrow 16(x-1)-(x-1)^2(x+2)^2=0\\\Leftrightarrow (x-1)[16-(x-1)(x+2)^2]=0\\\Leftrightarrow \left[ \begin{array}{l}x-1=0\\16(x-1)(x+2)^2=0\end{array} \right.\) 
     Giải phương trình 16(x-1)(x+2)^2=0
    <=> 16 -(x^2 +4x + 4)(x-1)=0
    <=> 16-(x^3 -x^2 + 4x^2 -4x + 4x -4)=0
    <=> 16-x^3 -3x^2 +4=0
    <=> -x^3 -3x^2 +20 =0
    <=> -x^2 -2x^2 + 5x^2 +20=0
    <=> x^2(x-2)+5(x^2-4)=0
    <=> -(x-2)[x^2+5(x+2)]=0
    <=> (x-2)(x^2 +5x +10)=0
    \(\Leftrightarrow  x=2,\quad x\notin \mathbb{R}\)
    Vậy phương trình ** có hai nghiệm 1 và 2
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )