Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 9: ($\frac{√x+2}{x+2√x+1}$-$\frac{√x-2}{x-1}$).$\frac{√x-2}{x-1}$ rút gọn hộ mình nha

Toán Lớp 9: ($\frac{√x+2}{x+2√x+1}$-$\frac{√x-2}{x-1}$).$\frac{√x-2}{x-1}$
rút gọn hộ mình nha

Comments ( 2 )

  1. Giải đáp + Lời giải và giải thích chi tiết:
     ((\sqrt{x} + 2)/(x+2\sqrt{x} + 1) – (\sqrt{x} – 2)/(x-1) ) . ((\sqrt{x}+1)/(\sqrt{x}))
    đk : x $\neq$ 1
    =( (\sqrt{x} + 2)/(\sqrt{x}+1)^2  – (\sqrt{x}-2)/((\sqrt{x}+1)(\sqrt{x}-1)) ) . ((\sqrt{x}+1)/(\sqrt{x}))
    =( (\sqrt{x}+2)(\sqrt{x}-1)-(\sqrt{x}-2)(\sqrt{x}+1))/((\sqrt{x}+1)(x-1)) . ((\sqrt{x}+1)/(\sqrt{x}))
    =(x+\sqrt{x}-2-(x-\sqrt{x}-2))/((\sqrt{x}+1)(x-1)) . ((\sqrt{x}+1)/(\sqrt{x}))
    =(x+\sqrt{x}-2-x+\sqrt{x}+2)/((\sqrt{x}+1)(x-1)) . ((\sqrt{x}+1)/(\sqrt{x}))
    =(2\sqrt{x})/((\sqrt{x}+1)(x-1)) . (\sqrt{x}+1)/\sqrt{x}
    =(2(\sqrt{x}+1))/((\sqrt{x}+1)(x-1))

  2. $(\dfrac{\sqrt[]{x}+2}{x+2\sqrt[]{x}+1}-$ $\dfrac{\sqrt[]{x}-2}{x-1}).$ $\dfrac{\sqrt[]{x}+1}{\sqrt[]{x}}$
    $=(\dfrac{\sqrt[]{x}+2}{(\sqrt[]{x}+1)^2}-$ $\dfrac{\sqrt[]{x}-2}{(\sqrt[]{x}-1)(\sqrt[]{x}+1)}).$ $\dfrac{\sqrt[]{x}+1}{\sqrt[]{x}}$
    $=\dfrac{(\sqrt[]{x}+2)(\sqrt[]{x}-1)-(\sqrt[]{x}-2)(\sqrt[]{x}+1)}{(\sqrt[]{x}+1)^2.(\sqrt[]{x}-1)}.$ $\dfrac{\sqrt[]{x}+1}{\sqrt[]{x}}$
    $\dfrac{x-\sqrt[]{x}+2\sqrt[]{x}-2-(x+\sqrt[]{x}-2\sqrt[]{x}-2)}{(\sqrt[]{x}+1)^2.(\sqrt[]{x}-1)}.$ $\dfrac{\sqrt[]{x}+1}{\sqrt[]{x}}$
    $=\dfrac{x+\sqrt[]{x}-2-x+\sqrt[]{x}+2}{(\sqrt[]{x}+1)^2.(\sqrt[]{x}-1)}.$ $\dfrac{\sqrt[]{x}+1}{\sqrt[]{x}}$
    $=\dfrac{2\sqrt[]{x}}{(\sqrt[]{x}+1)^2.(\sqrt[]{x}-1)}.$ $\dfrac{\sqrt[]{x}+1}{\sqrt[]{x}}$
    $=\dfrac{2(\sqrt[]{x}+1)}{(\sqrt[]{x}+1)^2.(\sqrt[]{x}-1)}$
    $=\dfrac{2}{(\sqrt[]{x}-1)(\sqrt[]{x}+1)}$
    $=\dfrac{2}{x-1}$
    Chúc bạn học tốt !!!!
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )