Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 9: cmr: (b+c)/a^2+(c+a)/b^2+(a+b)/c^2 >= 2/a+2/b+2/c

Toán Lớp 9: cmr: (b+c)/a^2+(c+a)/b^2+(a+b)/c^2 >= 2/a+2/b+2/c

Comments ( 1 )

  1. Giải đáp:
     chứng minh
    Lời giải và giải thích chi tiết: $a, b, c > 0$
    Ta đi chứng minh : $\frac{b+c}{a^{2}} + \frac{c+a}{b^{2}} + \frac{a+b}{c^{2}} ≥ \frac{2}{a} + \frac{2}{b} + \frac{2}{c}$
    ⇔ $( \frac{b+c}{a^{2}} – \frac{2}{a} ) + ( \frac{c+a}{b^{2}} – \frac{2}{b} ) + ( \frac{a+b}{c^{2}} – \frac{2}{c} ) ≥ 0$
    ⇔ $\frac{b+c-2a}{a^{2}} + \frac{c+a-2b}{b^{2}} + \frac{a+b-2c}{c^{2}} ≥ 0$
    ⇔ $\frac{b-a}{a^{2}} + \frac{c-a}{a^{2}} + \frac{c-b}{b^{2}} + \frac{a-b}{b^{2}} + \frac{a-c}{c^{2}} + \frac{b-c}{c^{2}} ≥ 0$
    ⇔ $( a – b )( \frac{1}{b^{2}} – \frac{1}{a^{2}} ) + ( b – c )( \frac{1}{c^{2}} – \frac{1}{b^{2}} ) + ( c – a )( \frac{1}{a^{2}} – \frac{1}{c^{2}} ) ≥ 0$
    ⇔ $( a – b )\frac{(a-b)(a+b)}{(ab)^{2}} + ( b – c )\frac{(b-c)(b+c)}{(bc)^{2}} + ( c – a )\frac{(c-a)(c+a)}{(ac)^{2}} ≥ 0$
    ⇔ $\frac{(a-b)^{2}(a+b)}{(ab)^{2}} + \frac{(b-c)^{2}(b+c)}{(bc)^{2}} + \frac{(c-a)^{2}(c+a)}{(ac)^{2}} ≥ 0$ ( luôn đúng với $∀ a, b, c > 0$ )
    Dấu “=” xảy ra ⇔ $a = b = c$

Leave a reply

222-9+11+12:2*14+14 = ? ( )