Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 9: Cho P = $\frac{\sqrt{a}(16-\sqrt{a})}{a-4}$ + $\frac{3+2\sqrt{a}}{2-\sqrt{a}}$ – $\frac{2-3\sqrt{a}}{\sqrt{a}+2}$ ( a $\geq$ 0, a $\ne

Toán Lớp 9: Cho P = $\frac{\sqrt{a}(16-\sqrt{a})}{a-4}$ + $\frac{3+2\sqrt{a}}{2-\sqrt{a}}$ – $\frac{2-3\sqrt{a}}{\sqrt{a}+2}$ ( a $\geq$ 0, a $\neq$ 4)
Rút gọn P
Tìm GTNN của Q

Comments ( 1 )

  1. Giải đáp:
    $a. P = \frac{1}{\sqrt[]{a}+2}$
    $b.$ GTNN $Q = \frac{1}{2}$ khi $a = 0$
    Lời giải và giải thích chi tiết:
    ĐKXĐ : $a ≥ 0 , a \ne 4$
    $a. P = \frac{\sqrt[]{a}(16-\sqrt[]{a})}{a-4} + \frac{3+2\sqrt[]{a}}{2-\sqrt[]{a}} – \frac{2-3\sqrt[]{a}}{\sqrt[]{a}+2}$
    $P = \frac{16\sqrt[]{a}-a}{(\sqrt[]{a}-2)(\sqrt[]{a}+2)} – \frac{(3+2\sqrt[]{a})(\sqrt[]{a}+2)}{(\sqrt[]{a}-2)(\sqrt[]{a}+2)} – \frac{(2-3\sqrt[]{a})(\sqrt[]{a}-2)}{(\sqrt[]{a}+2)(\sqrt[]{a}-2)}$
    $P = \frac{16\sqrt[]{a}-a-(2a+7\sqrt[]{a}+6)-(-3a+8\sqrt[]{a}-4)}{(\sqrt[]{a}-2)(\sqrt[]{a}+2)}$
    $P = \frac{16\sqrt[]{a}-a-2a-7\sqrt[]{a}-6+3a-8\sqrt[]{a}+4}{(\sqrt[]{a}-2)(\sqrt[]{a}+2)}$
    $P = \frac{\sqrt[]{a}-2}{(\sqrt[]{a}-2)(\sqrt[]{a}+2)}$
    $P = \frac{1}{\sqrt[]{a}+2}$
    $b. Q = \frac{1}{\sqrt{a}+2} + \sqrt[]{a}$
    ⇔ $Q = \frac{1+\sqrt[]{a}(\sqrt[]{a}+2)}{\sqrt[]{a}+2}$
    ⇔ $Q = \frac{1+a+2\sqrt[]{a}}{\sqrt[]{a}+2}$
    Ta đi chứng minh : $Q ≥ \frac{1}{2}$ $∀ a ≥ 0 , a \ne 4$
    ⇔ $\frac{a+2\sqrt[]{a}+1}{\sqrt[]{a}+2} ≥ \frac{1}{2}$
    ⇔ $2( a + 2\sqrt[]{a} + 1 ) ≥ \sqrt[]{a} + 2$
    ⇔ $2a + 4\sqrt[]{a} + 2 – \sqrt[]{a} – 2 ≥ 0$
    ⇔ $2a + 3\sqrt[]{a} ≥ 0$
    ⇔ $\sqrt[]{a}( 2\sqrt[]{a} + 3 ) ≥ 0$ luôn đúng với $∀ a ≥ 0 , a \ne 4$
    Dấu “=” xảy ra ⇔ $a = 0$

Leave a reply

222-9+11+12:2*14+14 = ? ( )