Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 9: Cho `\Delta ABC` nhọn ngoại tiếp `(I)`, `MN ⊥ AI=I` `(M\in AB, N\in AC)`. CMR: a) `((IB)/(IC))^2=(BM)/(CN)` B) `(BM)/(AB)+(CN)/(AC)+(AI

Toán Lớp 9: Cho \Delta ABC nhọn ngoại tiếp (I), MN ⊥ AI=I (M\in AB, N\in AC). CMR:
a) ((IB)/(IC))^2=(BM)/(CN)
B) (BM)/(AB)+(CN)/(AC)+(AI^2)/(AB. AC)=1

Comments ( 1 )

  1. a)
    Có: $\widehat{BIM}=\widehat{BIA}-\widehat{MIA}$
    $\Rightarrow \widehat{BIM}=\left( 180{}^\circ -\widehat{IAB}-\widehat{IBA} \right)-90{}^\circ $
    $\Rightarrow \widehat{BIM}=90{}^\circ -\dfrac{1}{2}\left( \widehat{A}+\widehat{B} \right)$
    $\Rightarrow \widehat{BIM}=\dfrac{180{}^\circ -\left( \widehat{A}+\widehat{B} \right)}{2}$
    $\Rightarrow \widehat{BIM}=\dfrac{\widehat{C}}{2}$
    $\Rightarrow \widehat{BIM}=\widehat{ICN}=\widehat{BCI}$
    Chứng minh tương tự:
    Có: $\widehat{CIN}=\widehat{IBM}=\widehat{CBI}$
    $\Rightarrow \Delta BIM\backsim\Delta ICN\backsim\Delta BCI\left( g.g \right)$
     
    Từ: $\Delta BIM\backsim\Delta ICN\Rightarrow \dfrac{IB}{IC}=\dfrac{BM}{IN}$
    Từ: $\Delta BCI\backsim\Delta ICN\Rightarrow \dfrac{IB}{IC}=\dfrac{IN}{CN}$
    $\Rightarrow \dfrac{IB}{IC}\cdot \dfrac{IB}{IC}=\dfrac{BM}{IN}\cdot \dfrac{IN}{CN}$
    $\Rightarrow {{\left( \dfrac{IB}{IC} \right)}^{2}}=\dfrac{BM}{CN}$
     
    b)
    $\Delta AMN$ có $AI$ vừa là đường cao, đường phân giác
    $\Rightarrow \Delta AMN$ cân tại $A$
    $\Rightarrow AM=AN$   và   $IM=IN$
     
    Từ $\Delta BIM\backsim\Delta ICN$
    $\Rightarrow IM.IN=BM.CN$
    $\Rightarrow I{{M}^{2}}=BM.CN$
     
    Biển đổi tương đương từ yêu cầu đề bài:
    Từ:  $\dfrac{BM}{AB}+\dfrac{CN}{AC}+\dfrac{A{{I}^{2}}}{AB.AC}=1$
    $\Leftrightarrow BM.AC+CN.AB+A{{M}^{2}}-I{{M}^{2}}=AB.AC$
    $\Leftrightarrow BM.AC+CN.AB+A{{M}^{2}}-BM.CN=AB.AC$
    $\Leftrightarrow A{{M}^{2}}+\left( CN.AB-BM.CN \right)=\left( AB.AC-BM.AC \right)$
    $\Leftrightarrow A{{M}^{2}}+CN\left( AB-BM \right)=AC\left( AB-BM \right)$
    $\Leftrightarrow A{{M}^{2}}+CN.AM=AC.AM$
    $\Leftrightarrow A{{M}^{2}}=AM\left( AC-CN \right)$
    $\Leftrightarrow A{{M}^{2}}=AM.AN$ (luôn đúng do $AM=AN$)
    Vậy: $\dfrac{BM}{AB}+\dfrac{CN}{AC}+\dfrac{A{{I}^{2}}}{AB.AC}=1$

    toan-lop-9-cho-delta-abc-nhon-ngoai-tiep-i-mn-ai-i-m-in-ab-n-in-ac-cmr-a-ib-ic-2-bm-cn-b-bm-ab-c

Leave a reply

222-9+11+12:2*14+14 = ? ( )