Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 9: Cho các số thực `a_1,a_2,a_3,…,a_2003` thỏa mãn `a_1+a_2+a_3+…+a_2003=1` Chứng minh `a_1^2+a_2^2+…+a_2003^2>=1/2003`

Toán Lớp 9: Cho các số thực a_1,a_2,a_3,…,a_2003 thỏa mãn a_1+a_2+a_3+…+a_2003=1
Chứng minh a_1^2+a_2^2+…+a_2003^2>=1/2003

Comments ( 2 )

  1. a1 + a2 + a3 + ….+ a2003 =1
    =>a1^2 + a2^2 +a3^2 +……+a2003^2 >= a1+a2+a3+…..+a2003
    =>2003(a1^2+a2^2+……+a2003^2)>=a1+a2+a3+…..a2003
    =>a1^2+a2^2+a3^2+….a2003^2>=1/2003

  2. $a_1$ + $a_2$ +…..+ $a_{2003}$ = 1
    Cm: $a_1^{2}$ + $a_2^{2}$+….+$x_{2003} ^{2}$ $\ge$$\dfrac{1}{2003}$
    Ta có : $a_1^{2}$ + $a_2^{2}$+….+$x_{2003} ^{2}$
    $\ge$ $\dfrac{(a_{1} +a_{2}+ a_{3} +….+ a_{2003})^{2}}{2003}$ 
    $\leftrightarrow$ $a_1^{2}$ + $a_2^{2}$+….+$x_{2003} ^{2}$ $\ge$$\dfrac{1}{2003}$
    $\Rightarrow$ đpcm
    Dấu “=” xảy ra $\Leftrightarrow$ $a_1$ = $a_2$= ….. =$\dfrac{1}{2003}$ 

Leave a reply

222-9+11+12:2*14+14 = ? ( )