Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Tìm Min G = 2x^2 + 2y^2 + z^2 + 2xy – 2xz – 2yz – 2x – 4y

Toán Lớp 8: Tìm Min
G = 2x^2 + 2y^2 + z^2 + 2xy – 2xz – 2yz – 2x – 4y

Comments ( 1 )

  1. Giải đáp: min G=-5 khi (x;y;z)=(1;2;3)
     
    Lời giải và giải thích chi tiết:
     G=2x^2+2y^2+z^2+2xy-2xz-2yz-2x-4y
    =x^2+y^2+z^2+2xy-2xz-2yz+x^2-2x+1+y^2-4y+4-5
    =[(x^2+2xy+y^2)-2.z.(x+y)+z^2]+(x^2-2x+1)+(y^2-4y+4)-5
    =[(x+y)^2-2.z.(x+y)+z^2]+(x-1)^2+(y-2)^2-5
    =(x+y-z)^2+(x-1)^2+(y-2)^2-5
    Vì (x+y-z)^2≥0∀x;y;z\text( )(x-1)^2≥0∀x\text( )(y-2)^2≥0∀y
    ->(x+y-z)^2+(x-1)^2+(y-2)^2≥0∀x;y;z
    ->(x+y-z)^2+(x-1)^2+(y-2)^2-5≥-5∀x;y;z
    Dấu ‘=’ xảy ra <=>$\begin{cases}x+y-z=0\\x-1=0\\y-2=0\end{cases}$<=>$\begin{cases}1+2=z\\x=1\\y=2\end{cases}$
    <=>$\begin{cases}z=3\\x=1\\y=2\end{cases}$
    Vậy min G=-5 khi (x;y;z)=(1;2;3)

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Thanh Tú