Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Tìm giá trị của`E=1+((2x^3+x^2-x)/(x^3-1)-(2x-1)/(x-1))*(x^2-x)/(2x-1)` Biết `x^2+x-6=0`

Toán Lớp 8: Tìm giá trị củaE=1+((2x^3+x^2-x)/(x^3-1)-(2x-1)/(x-1))*(x^2-x)/(2x-1)
Biết x^2+x-6=0

Comments ( 2 )

  1. Lời giải và giải thích chi tiết:
    Ta có:
    x^2+x-6=0
    <=>x^2-2x+3x-6=0
    <=>(x^2-2x)+(3x-6)=0
    <=>x.(x-2)+3.(x-2)=0
    <=>(x+3)(x-2)=0
    <=>[(x+3=0),(x-2=0):}
    <=>[(x=-3),(x=2):}
    E=1+((2x^3+x^2-x)/(x^3-1)-(2x-1)/(x-1)).(x^2-x)/(2x-1)( x\ne1;1/2 )
    E=1+((x.(2x^2+x-1))/((x-1)(x^2+x+1))-(2x-1)/(x-1)) . (x.(x-1))/(2x-1)
    E=1+((x.(2x^2+2x-x-1))/((x-1)(x^2+x+1))-(2x-1)/(x-1)).(x.(x-1))/(2x-1)
    E=1+((x.[2x.(x+1)-(x+1)])/((x-1)(x^2+x+1))-(2x-1)/(x-1)).(x.(x-1))/(2x-1)
    E=1+((x.(2x-1).(x+1))/((x-1)(x^2+x+1))-((2x-1).(x^2+x+1))/((x-1)(x^2+x+1))).(x.(x-1))/(2x-1)
    E=1+(x.(2x-1).(x+1)-(2x-1).(x^2+x+1))/((x-1)(x^2+x+1)) . (x.(x-1))/(2x-1)
    E=1+((2x-1).[x.(x+1)-x^2-x-1])/((x-1)(x^2+x+1)).(x.(x-1))/(2x-1)
    E=1+((2x-1).(x^2+x-x^2-x-1))/((x-1)(x^2+x+1)) . (x.(x-1))/(2x-1)
    E=1+((2x-1).(-1))/((x-1).(x^2+x+1)).(x.(x-1))/(2x-1)
    E=1+(-(2x-1).x.(x-1))/((x-1)(x^2+x+1)(2x-1))
    E=1+(-x)/(x^2+x+1)
    E=(x^2+x+1)/(x^2+x+1)+(-x)/(x^2+x+1)
    E=(x^2+1)/(x^2+x+1)
    Với x=2
    E=(2^2+1)/(2^2+2+1)
    E=(4+1)/(4+2+1)
    E=5/7
    Vậy E=5/7 tại x=2
    Với x=-3
    E=((-3)^2+1)/((-3)^2-3+1)
    E=(9+1)/(9-3+1)
    E=10/7
    Vậy E=10/7 tại x=-3

  2. Giải đáp:
    \(\left[ {\begin{array}{*{20}{l}}
    {E = \dfrac{{10}}{7}}\\
    {E = \dfrac{5}{7}}
    \end{array}} \right.\)
    Lời giải và giải thích chi tiết:
    \(\begin{array}{*{20}{l}}
    {a)DK:x \ne \left\{ {\dfrac{1}{2};1} \right\}}\\
    {E = 1 + \left( {\dfrac{{2{x^3} + {x^2} – x}}{{{x^3} – 1}} – \dfrac{{2x – 1}}{{x – 1}}} \right).\dfrac{{{x^2} – x}}{{2x – 1}}}\\
    { = 1 + \dfrac{{2{x^3} + {x^2} – x – \left( {2x – 1} \right)\left( {{x^2} + x + 1} \right)}}{{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right)}}.\dfrac{{x\left( {x – 1} \right)}}{{2x – 1}}}\\
    { = 1 + \dfrac{{2{x^3} + {x^2} – x – 2{x^3} – 2{x^2} – 2x + {x^2} + x + 1}}{{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right)}}.\dfrac{{x\left( {x – 1} \right)}}{{2x – 1}}}\\
    { = 1 + \dfrac{{ – 2x + 1}}{{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right)}}.\dfrac{{x\left( {x – 1} \right)}}{{2x – 1}}}\\
    { = 1 – \dfrac{{2x – 1}}{{\left( {x – 1} \right)\left( {{x^2} + x + 1} \right)}}.\dfrac{{x\left( {x – 1} \right)}}{{2x – 1}}}\\
    { = 1 – \dfrac{x}{{{x^2} + x + 1}}}\\
    { = \dfrac{{{x^2} + x + 1 – x}}{{{x^2} + x + 1}}}\\
    { = \dfrac{{{\rm{\;}}{x^2} + 1}}{{{x^2} + x + 1}}}\\
    {Do:{x^2} + x – 6 = 0}\\
    { \to \left( {x + 3} \right)\left( {x – 2} \right) = 0}\\
    { \to \left[ {\begin{array}{*{20}{l}}
    {x = {\rm{ \;}} – 3}\\
    {x = 2}
    \end{array}} \right.}\\
    {Thay:\left[ {\begin{array}{*{20}{l}}
    {x = {\rm{ \;}} – 3}\\
    {x = 2}
    \end{array}} \right.}
    \end{array}\)
    \( \to \left[ {\begin{array}{*{20}{l}}
    {E = \dfrac{{{{\left( { – 3} \right)}^2} + 1}}{{{{\left( { – 3} \right)}^2} – 3 + 1}} = \dfrac{{10}}{7}}\\
    {E = \dfrac{{{2^2} + 1}}{{{2^2} + 2 + 1}} = \dfrac{5}{7}}
    \end{array}} \right.\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )