Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Phân tích thành nhân tử X^2(y-z)+y^2(z-x)+z^2(x-y)

Toán Lớp 8: Phân tích thành nhân tử
X^2(y-z)+y^2(z-x)+z^2(x-y)

Comments ( 2 )

  1. Giải đáp:
    $(y-z)(x-z)(x-y)$
    Lời giải và giải thích chi tiết:
    $x^2(y-z)+y^2(z-x)+z^2(x-y)$
    $=x^2(y-z)+(y^2.z-y^2.x)+(z^2.x-z^2.y)$
    $=x^2(y-z)+(y^2z-y^2x)+(z^2x-z^2y)$
    $=x^2(y-z)+y^2z-y^2x+z^2x-z^2y$
    $=x^2(y-z)+(y^2z-z^2y)-(y^2x-z^2x)$
    $=x^2(y-z)+(zy.y-zy.z)-(y^2.x-z^2.x)$
    $=x^2(y-z)+zy(y-z)-x(y^2-z^2)$
    $=x^2(y-z)+zy(y-z)-x(y-z)(y+z)$
    $=(y-z)[x^2+zy-x(y+z)]$
    $=(y-z)(x^2+zy-xy-xz)$
    $=(y-z)(x^2-xy-xz+zy)$
    $=(y-z)[(x^2-xy)-(xz-zy)]$
    $=(y-z)[x(x-y)-z(x-y)]$
    $=(y-z)(x-z)(x-y)$

  2. $\\$
    x^2(y-z) + y^2(z-x) + z^2(x-y)
    =x^2(y-z) + y^2z – xy^2 + xz^2 – yz^2
    = x^2(y-z) + yz (y-z) – x (y-z)(y+z)
    = x^2(y-z) + yz (y-z) – (y-z)(xy+xz)
    = (y-z) (x^2+yz – xy – xz)
    = (y-z) [x(x-y) – z (x-y)]
    = (x-y)(y-z)(x-z)

Leave a reply

222-9+11+12:2*14+14 = ? ( )