Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Phân tích đa thức thành nhân tử: x³ + y³ + z³ – 3xyz Tìm x: ( x+1)² = (x+1)⁵

Toán Lớp 8: Phân tích đa thức thành nhân tử:
x³ + y³ + z³ – 3xyz
Tìm x:
( x+1)² = (x+1)⁵

Comments ( 2 )

  1. Phân tích đa thức thành nhân tử:
         x³+y³+z³-3xyz
    ⇔ x³+y³+3x²y²+3xy² + z³-3xyz -3x²y-3xy² 
    ⇔ (x+y)³ + z³ -3xy( z+x +y)
    ⇔ ( x+y+z )[ (x+y)² – (x+y).z + z² ] -3xyz( z+x+y )
    ⇔ ( x+y+z ) [ (x+y)² – z.(x+y) + z² – 3xyz ]
    ⇔ ( x+y+z ) ( x²+y²+z²-xy -zx -zy )
    Tìm x:
         (x+1)²=(x+1)⁵
    ⇔ 0 = (x+1)⁵ – (x+1)²
    ⇔ 0 = (x+1)² [ (x+1)³ – 1 ]
    ⇔$\left \{ {{x=-1} \atop {x=0}} \right.$ 

  2. a) x^3 + y^3 + z^3 – 3xyz
    = x^3 + (y+z)(y^2 – yz + z^2) – 3xyz
    = x^3 + (y+z)[(y^2 + 2yz + z^2) – 3yz] – 3xyz
    = x^3 + (y+z)[(y+z)^2 – 3yz] – 3xyz
    = x^3 + (y+z)^3 – 3yz(y+z) – 3xyz
    = (x+y+z)[x^2 – x(y+z) + (y+z)^2] – 3yz(y+z+x)
    = (x+y+z)(x^2 – xy – xz + y^2 + 2yz + z^2  – 3yz)
    = (x+y+z)(x^2 + y^2 + z^2 – xy – yz – xz)
    b) (x+1)^2 = (x+1)^5
    <=> (x+1)^5 – (x+1)^2 =0
    <=> (x+1)^2 [(x+1)^3 -1]=0
    +) (x+1)^2=0
    <=> x+1=0
    <=> x=-1
    +) (x+1)^3 – 1=0
    <=> (x+1)^3 =1
    <=> x+1=1
    <=> x=0
    Vậy x in { -1;0}

Leave a reply

222-9+11+12:2*14+14 = ? ( )