Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Chứng minh rằng: `x^2 +y^2 +1 ≥xy+x+y`

Toán Lớp 8: Chứng minh rằng: x^2 +y^2 +1 ≥xy+x+y

Comments ( 2 )

  1. x^2+y^2+1>=xy+x+y
    <=>2(x^2+y^2+1)>=2(xy+x+y)
    <=>2x^2+2y^2+2>=2xy+2x+2y
    <=>2x^2+2y^2+2-2xy-2x-2y>=0
    <=>(x^2-2xy+y^2)+(x^2-2x+1)+(y^2-2y+1)>=0
    <=>(x-y)^2+(x-1)^2+(y-1)^2>=0(luôn đúng)
    =>Điều phải chứng minh

  2. x² + y² + 1 ≥ xy + x + y
    ⇔2(x² + y² + 1) ≥ 2(xy + x + y)
    ⇔2x² + 2y² + 2 ≥ 2xy + 2x + 2y
    ⇔2x² + 2y² + 2 – 2xy – 2x – 2y ≥0
    ⇔x²+ x² + y² + y²+ 1 +1 – 2xy – 2x – 2y ≥0
    ⇔ (x² -2xy + y²) + (x² -2x + 1) + (y² -2y + 1) ≥0
    ⇔ (x-y)² + (x-1)² + (y-1)² ≥0 ( luôn đúng vì (x-y)²≥0; (x-1)²≥0; (y-1)²≥0)
    Vậy x² + y² + 1 ≥ xy + x + y
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )