Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: cho a ³+b ³+c ³=3abc . chứng minh rằng a+b+c=0 hoặc a=b=c hứa vote 5 sao ạ giúp em

Toán Lớp 8: cho a ³+b ³+c ³=3abc . chứng minh rằng a+b+c=0 hoặc a=b=c
hứa vote 5 sao ạ giúp em

Comments ( 1 )

  1. Ta có:
    a^3 + b^3 + c^3 = 3abc
    <=> a^3 + b^3 + c^3 – 3abc = 0
    <=> (a^3 + ab^2 + ac^2 – ab^2 – abc – a^2c) + (a^2b + b^3 + bc^2 – ab^2 – cb^2 – abc) + (a^2c + b^2c + c^3 – abc – bc^2 – ac^2) = 0
    <=> a (a^2 + b^2 + c^2 – ab – bc – ac) + b (a^2 + b^2 + c^2 – ab – bc – ac) + c (a^2 + b^2 + c^2 – ab – bc – ac) = 0
    <=> (a+b+c) (a^2 + b^2 + c^2 – ab – bc – ac) = 0
    <=> a + b + c = 0 hoặc a^2 + b^2 + c^2 – ab – bc – ac = 0
    +) a + b + c = 0
    +) a^2 + b^2 + c^2 – ab – bc – ac = 0
    <=> 2 (a^2 + b^2 + c^2 – ab -bc-ac) = 0
    <=> 2a^2+ 2b^2 + 2c^2 – 2ab – 2bc – 2ac = 0
    <=> (a^2 – 2ab + b^2) + (b^2 – 2bc + c^2) + (c^2 – 2ac + a^2) = 0
    <=> (a-b)^2 + (b-c)^2 + (a-c)^2 = 0
    \forall a;b;c ta có :
    (a-b)^2 \ge 0
    (b-c)^2 \ge 0
    (a-c)^2 \ge 0
    => (a-b)^2 + (b-c)^2 + (a-c)^2 \ge 0
    Dấu = xảy ra <=> {((a-b)^2 = 0 ),((b-c)^2 = 0 ),((a-c)^2 = 0):}
    <=> {(a-b=0),(b-c=0),(a-c=0):}
    <=> {(a = b ),(b = c ),(a = c):}
    <=> a = b = c
    Vậy với a^3 + b^3 + c^3 = 3abc thì a+b+c=0 hoặc a=b=c.
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )