Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 8: Bài 1 phan tich thanh nhan tu (x^2-y^2)^5-(x^2-1)^5-(1-y^2)^5 moi nguoi giup minh voi a

Toán Lớp 8: Bài 1 phan tich thanh nhan tu (x^2-y^2)^5-(x^2-1)^5-(1-y^2)^5 moi nguoi giup minh voi a

Comments ( 1 )

  1. Giải đáp:
    $5(x-1)(x+1)(1+y)(1-y)(x-y)(x+y)(x^4+y^4-x^2y^2-x^2-y^2+1)$
    Lời giải và giải thích chi tiết:
    Đặt $x^2-1=a, 1-y^2=b$
    $\to x^2-y^2=a+b$
    Ta có:
    $(a+b)^5-a^5-b^5$
    $=(a+b)^2\cdot (a+b)^3-a^5-b^5$
    $=(a^2+2ab+b^2)\cdot (a^3+3ab(a+b)+b^3)-a^5-b^5$
    $=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5-a^5-b^5$
    $=5a^4b+10a^3b^2+10a^2b^3+5ab^4$
    $=5ab(a^3+2a^2b+2ab^2+b^3)$
    $=5ab((a^3+b^3)+(2a^2b+2ab^2))$
    $=5ab((a+b)(a^2-ab+b^2)+2ab(a+b))$
    $=5ab(a+b)(a^2-ab+b^2+2ab)$
    $=5ab(a+b)(a^2+ab+b^2)$
    Đặt $P=(x^2-y^2)^5-(x^2-1)^5-(1-y^2)^5$
    $\to P=5(x^2-1)(1-y^2)(x^2-y^2)((x^2-1)^2+(x^2-1)(1-y^2)+(1-y^2)^2)$
    $\to P=5(x-1)(x+1)(1+y)(1-y)(x-y)(x+y)(x^4+y^4-x^2y^2-x^2-y^2+1)$

Leave a reply

222-9+11+12:2*14+14 = ? ( )