Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 7: Tính M=X+y+z biết 13/X+y +13/y+z +13/z+X=11z/X+y +11X/y+z + 11z/z+X=143/10

Toán Lớp 7: Tính M=X+y+z biết
13/X+y +13/y+z +13/z+X=11z/X+y +11X/y+z + 11z/z+X=143/10

Comments ( 2 )

  1. $\\$
    13/(x+y) +(13)/(y+z) + (13)/(z+x) = 143/10
    -> 13 (1/(x+y)+1/(y+z) +1/(z+x) ) = 143/10
    -> 1/(x+y)+1/(y+z)+1/(z+x)=143/10 : 13
    -> 1/(x+y)+1/(y+z)+1/(z+x)=11/10
    $\\$
    (11z)/(x+y)+(11x)/(y+z)+(11y)/(z+x)=143/10
    -> ( (11z)/(x+y)+(11x)/(y+z)+(11y)/(z+x) ) . 1/11= 143/10 . 1/11
    -> z/(x+y)+x/(y+z)+y/(z+x) = 13/10
    -> z/(x+y)+x/(y+z)+y/(z+x) +3=13/10 + 3
    -> ( z/(x+y)+1) + ( x/(y+z)+1) + (y/(z+x)+1)=43/10
    -> ( z/(x+y)+(x+y)/(x+y) ) + (x/(y+z)+(y+z)/(y+z) ) + (y/(z+x)+(z+x)/(z+x) ) = 43/10
    ->(x+y+z)/(x+y) + (x+y+z)/(y+z) + (x+y+z)/(z+x) = 43/10
    -> (x+y+z) (1/(x+y)+1/(y+z)+1/(z+x) ) = 43/10
    -> (x+y+z) . 11/10 = 43/10
    -> x+y+z=43/10 : 11/10
    ->x+y+z=43/11
    Vậy x+y+z=43/11
     

  2. Giải đáp: $x+y+z=\dfrac{43}{11}$
    Lời giải và giải thích chi tiết:
    Ta có:
    $\dfrac{11z}{x+y}+\dfrac{11x}{y+z}+\dfrac{11y}{z+x}=\dfrac{143}{10}$
    $\to \dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{z+x}=\dfrac{13}{10}$
    $\to (1+\dfrac{z}{x+y})+(1+\dfrac{x}{y+z})+(1+\dfrac{y}{z+x})=3+\dfrac{13}{10}$
    $\to \dfrac{x+y+z}{x+y}+\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{z+x}=\dfrac{43}{10}$
    $\to (x+y+z)( \dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x})=\dfrac{43}{10}$
    Lại có:
    $\dfrac{13}{x+y}+\dfrac{13}{y+z}+\dfrac{13}{z+x}=\dfrac{143}{10}$
    $\to \dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}=\dfrac{11}{10}$
    $\to (x+y+z)\cdot \dfrac{11}{10}=\dfrac{43}{10}$
    $\to x+y+z=\dfrac{43}{11}$

Leave a reply

222-9+11+12:2*14+14 = ? ( )