Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 7: f(=(x))=x^10-2017x^9-2017x^8=2017x-1 biết x=2018

Toán Lớp 7: f(=(x))=x^10-2017x^9-2017x^8-….-2017x-1 biết x=2018

Comments ( 2 )

  1. Giải đáp:
     
    Lời giải và giải thích chi tiết:
     Thay x=2018 vào f(x) ta có : 
    f(2018) = $2018^{10}$ – $2017$ . $2018^{9}$ – $2017$ . $2018^{8}$ -…- $2017$ . $2018$ – $1$ 
    = $2018^{10}$ – ($2018$ – $1$) . $2018^{9}$ – ($2018$ – $1$) . $2018^{8}$ -….- ($2018$ – $1$) . $2018$ – $1$ 
    = $2018^{10}$ – $2018^{10}$ + $2018^{9}$ – $2018^{9}$ + $2018^{8}$ – $2018^{8}$ +….+ $2018^{2}$ – $2018^{2}$ + $2018$ – $1$ 
    = $2018$ – $1$ 
    = $2017$ 
    Vậy f(2018)=2017 
    $\text{Nocopy}$ 
    $\textit{@gladbach}$

  2. Giải đáp:
    $\\$
    Biết x=2018
    -> x – 1 = 2017 (1)
    Có : f (x) = x^{10} – 2017 x^9 – 2017 x^8 – … – 2017x – 1
    Thay (1) vào ta được :
    -> f (x) = x^{10} – (x-1)x^9 – (x-1)x^8 – … – (x-1)x-1
    ->f (x) =x^{10} – x^{10} + x^9 – x^9 + x^8 – … – x^2 + x – 1
    -> f (x) = (x^{10}-x^{10}) + (x^9 – x^9) + … + (x^2-x^2) + (x-1)
    -> f (x)=x-1
    -> f (2018) = 2018-1
    -> f (2018) = 2017
    vậy f (2018) = 2017
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )