Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 7: Cho $\frac{a}{b}$ = $\frac{c}{d}$ CMR a) $\frac{ab}{cd}$ = $\frac{a^2 + b^2}{c^2 + d^2}$

Toán Lớp 7: Cho $\frac{a}{b}$ = $\frac{c}{d}$ CMR
a) $\frac{ab}{cd}$ = $\frac{a^2 + b^2}{c^2 + d^2}$

Comments ( 2 )

  1. Giải đáp:
    $\begin{array}{l}
    Đặt:\dfrac{a}{b} = \dfrac{c}{d} = k \Leftrightarrow \left\{ \begin{array}{l}
    a = b.k\\
    c = d.k
    \end{array} \right.\left( {k \ne 0} \right)\\
    \dfrac{{ab}}{{cd}} = \dfrac{{b.k.b}}{{d.k.d}} = \dfrac{{{b^2}}}{{{d^2}}}\\
    \dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}} = \dfrac{{{{\left( {bk} \right)}^2} + {b^2}}}{{{{\left( {dk} \right)}^2} + {d^2}}} = \dfrac{{{b^2}\left( {{k^2} + 1} \right)}}{{{d^2}\left( {{k^2} + 1} \right)}} = \dfrac{{{b^2}}}{{{d^2}}}\\
    Vậy\,\dfrac{{ab}}{{cd}} = \dfrac{{{a^2} + {b^2}}}{{{c^2} + {d^2}}}
    \end{array}$

  2. Giải đáp+Lời giải và giải thích chi tiết:
    Đặt\ a/b=c/d=k
    =>a=bk;c=dk
    +)(a^2+b^2)/(c^2+d^2)=(b^2k^2+b^2)/(d^2k^2+d^2)=(b^2.(k^2+1))/(d^2.(k^2+1))=b^2/d^2\ \ \ (1)
    +)(ab)/(cd)=(b^2k)/(d^2k)=b^2/d^2\ \ \ (2)
    Từ\ (1)\ (2)\ =>(ab)/(cd)=(a^2+b^2)/(c^2+d^2)

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Hồng