Toán Lớp 7: Cho ∆DEF có DE = DF. Gọi M là trung điểm của EF
a) Chứng minh: ∆DEM = ∆DFM
b) Chứng minh: DM là tia phân giác của EDF ?
<
Leave a reply
About Hồng
Related Posts
Toán Lớp 5: Một khu vườn hình chữ nhật có chiều dài gấp đôi chiều rộng, nếu tăng chiều rộng 10m và giảm chiều dài 10m thì diện tích khu gườn tăng t
Toán Lớp 5: Bài 1.Một xưởng dệt được 732m vải hoa chiếm 91,5% tổng số vải xưởng đó đã dệt. Hỏi xưởng đó đã dệt được bao nhiêu mét vải? (0.5 Points)
Toán Lớp 8: a, 3x^3 – 6x^2 -6x +12 =0 b, 8x^3 -8x^2 – 4x + 1=0
Toán Lớp 5: Số nhỏ nhất trong các số đo khối lượng 1,512kg, 1,5kg, 1kg51dag, 15dag5g là
Toán Lớp 5: Số nhỏ nhất trong các số đo khối lượng 1,512kg, 1,5kg, 1kg51dag, 15dag5g là giúp mik với, gấp lm
Comments ( 1 )
Giải đáp+Lời giải và giải thích chi tiết:
a) Xét triangleDEM và triangleDFM có:
DM là cạnh chung
DE=DF $(gt)$
EM=MF ( M là trung điểm của EF )
=> triangleDEM=triangleDFM (c.c.c)
$\\$
b) Vì triangleDEM=triangleDFM $(cmt)$
=>\hat{EDM}=\hat{FDM} (hai góc tương ứng)
=>DM là phân giác của \hat{EDF}