Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 7: 1: `(2x-1)^3`=8 `(2x-3)^2`=9 2: `x^2`=`x^5` `(3y-1)^10`=`(3y-1)^20` `(x-5)^2`=`(1-3x)^2`

Toán Lớp 7: 1:
(2x-1)^3=8
(2x-3)^2=9
2:
x^2=x^5
(3y-1)^10=(3y-1)^20
(x-5)^2=(1-3x)^2

Comments ( 2 )

  1. Giải đáp: + Lời giải và giải thích chi tiết:
     1)
    a) (2x-1)^3=8
    ⇔(2x-1)^3=2^3
    ⇔2x-1=2
    ⇔2x=3
    ⇔x=3/2
    Vậy x=3/2
    b)(2x-3)^2=9
    ⇔\(\left[ \begin{array}{l}2x-3=3\\2x-3=-3\end{array} \right.\) 
    ⇔\(\left[ \begin{array}{l}2x=6\\2x=0\end{array} \right.\) 
    ⇔\(\left[ \begin{array}{l}x=3\\x=0\end{array} \right.\) 
    Vậy x=3 hoặc x=0
    2)
    a)x^2=x^5
    ⇔x^2-x^5=0
    ⇔x^2(1-x^3)=0
    ⇔\(\left[ \begin{array}{l}x^2=0\\1-x^3=0\end{array} \right.\) 
    ⇔\(\left[ \begin{array}{l}x=0\\x=1\end{array} \right.\) 
    Vậy x=0 hoặc x=1
    b) (3y-1)^10=(3y-1)^20
    ⇔(3y-1)^10-(3y-1)^20=0
    ⇔(3y-1)^10 [1-(3y-1)^10]=0
    ⇔\(\left[ \begin{array}{l}(3y-1)^10=0\\1-(3y-1)^10=0\end{array} \right.\) 
    ⇔\(\left[ \begin{array}{l}3y-1=0\\(3y-1)^10=1\end{array} \right.\) 
    ⇔\(\left[ \begin{array}{l}y=\dfrac{1}{3}\\3y-1=1\\3y-1=-1\end{array} \right.\) 
    ⇔\(\left[ \begin{array}{l}y=\dfrac{1}{3}\\y=\dfrac{2}{3}\\y=0\end{array} \right.\) 
    Vậy y=1/3 hoặc y=2/3 hoặc y=0
    c)(x-5)^2=(1-3x)^2
    ⇔\(\left[ \begin{array}{l}x-5=1-3x\\x-5=-(1-3x)\end{array} \right.\) 
    ⇔\(\left[ \begin{array}{l}x-5=1-3x\\x-5=3x-1\end{array} \right.\) 
    ⇔\(\left[ \begin{array}{l}x+3x=5+1\\x-3x=5-1\end{array} \right.\) 
    ⇔\(\left[ \begin{array}{l}4x=6\\-2x=4\end{array} \right.\) 
    ⇔\(\left[ \begin{array}{l}x=\dfrac{3}{2}\\2x=-4\end{array} \right.\) 
    ⇔\(\left[ \begin{array}{l}x=\dfrac{3}{2}\\x=-2\end{array} \right.\) 
    Vậy x=3/2 hoặc x=-2

  2. Giải đáp:
    $\begin{array}{l}
    1){\left( {2x – 1} \right)^3} = 8\\
     \Leftrightarrow {\left( {2x – 1} \right)^3} = {2^3}\\
     \Leftrightarrow 2x – 1 = 2\\
     \Leftrightarrow 2x = 3\\
     \Leftrightarrow x = \dfrac{3}{2}\\
    Vậy\,x = \dfrac{3}{2}\\
    {\left( {2x – 3} \right)^2} = 9\\
     \Leftrightarrow \left[ \begin{array}{l}
    2x – 3 = 3\\
    2x – 3 =  – 3
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    2x = 6\\
    2x = 0
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = 3\\
    x = 0
    \end{array} \right.\\
    Vậy\,x = 3;x = 0\\
    2)\\
    {x^2} = {x^5}\\
     \Leftrightarrow {x^5} – {x^2} = 0\\
     \Leftrightarrow {x^2}\left( {{x^3} – 1} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    {x^2} = 0\\
    {x^3} = 1
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = 0\\
    x = 1
    \end{array} \right.\\
    Vậy\,x = 0;x = 1\\
    {\left( {3y – 1} \right)^{10}} = {\left( {3y – 1} \right)^{20}}\\
     \Leftrightarrow {\left( {3y – 1} \right)^{20}} – {\left( {3y – 1} \right)^{10}} = 0\\
     \Leftrightarrow {\left( {3y – 1} \right)^{10}}\left( {{{\left( {3y – 1} \right)}^{10}} – 1} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    3y – 1 = 0\\
    {\left( {3y – 1} \right)^{10}} = 1
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    y = \dfrac{1}{3}\\
    3y – 1 = 1\\
    3y – 1 =  – 1
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    y = \dfrac{1}{3}\\
    y = \dfrac{2}{3}\\
    y = 0
    \end{array} \right.\\
    Vậy\,y = 0;y = \dfrac{1}{3};y = \dfrac{2}{3}\\
    {\left( {x – 5} \right)^2} = {\left( {1 – 3x} \right)^2}\\
     \Leftrightarrow \left[ \begin{array}{l}
    x – 5 = 1 – 3x\\
    x – 5 = 3x – 1
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    4x = 6\\
    2x =  – 4
    \end{array} \right.\\
     \Leftrightarrow \left[ \begin{array}{l}
    x = \dfrac{3}{2}\\
    x =  – 2
    \end{array} \right.\\
    Vậy\,x =  – 2;x = \dfrac{3}{2}
    \end{array}$

Leave a reply

222-9+11+12:2*14+14 = ? ( )