Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Tìm min max y= sinx^6 + cosx^6

Toán Lớp 11: Tìm min max
y= sinx^6 + cosx^6

Comments ( 2 )

  1. $y=\sin^6x+\cos^6x$
    $=\sin^4x+\cos^4x-\sin^2x\cos^2x$
    $=(\sin^2x+\cos^2x)^2-2\sin^2x\cos^2x-\sin^2x\cos^2x$
    $=1-3\sin^2x\cos^2x$
    $=1-\dfrac{3}{4}\sin^22x$
    Ta có: $0\le \sin^22x\le 1$
    $\to -1\le -\sin^22x\le 0$
    $\to \dfrac{-3}{4}\le \dfrac{-3}{4}\sin^22x\le 0$
    $\to \dfrac{1}{4}\le y\le 1$
    Vậy: $\min y=\dfrac{1}{4}; \max y=1$

  2. Giải đáp:
    Giá trị lớn nhất: $1$
    Giá trị nhỏ nhất: $\dfrac{1}{4}$
    Lời giải và giải thích chi tiết:
    $A=sin^6x+cos^6x$
    $=(sin^2x+cos^2x)(sin^4x-sin^2x.cos^2x+cos^4x)$
    $=sin^4x-sin^2x.cos^2x+cos^4x$ (vì $sin^2x+cos^2x=1$)
    $=(sin^2x+cos^2x)^2-3sin^2x.cos^2x$
    $=1-3sin^2x.cos^2x$ (vì $sin^2x+cos^2x=1$)
    $=1-\dfrac{3}{4}.4.sin^2x.cos^2x$ 
    $=1-\dfrac{3}{4}.(2sinxcosx)^2$ 
    $=1-\dfrac{3}{4}.sin^22x$ 
    Ta có: $-1≤sin2x≤1$
    $⇒0≤sin^22x≤1$
    $⇔1≥1-\dfrac{3}{4}.sin^22x≥1-\dfrac{3}{4}$
    $⇔1≥1-\dfrac{3}{4}.sin^22x≥\dfrac{1}{4}$ hay $1≥A≥\dfrac{1}{4}$
    +) $MaxA=1⇔1-\dfrac{3}{4}.sin^22x=1$
    $⇔sin^22x=0⇔sin2x=0$
    $⇔x=\dfrac{k\pi}{2}$ $(k∈\mathbb{Z})$
    +)$MinA=\dfrac{1}{4}⇔1-\dfrac{3}{4}.sin^22x=\dfrac{1}{4}$
    $⇔sin^22x=1⇔1-cos^2x=1$
    $⇔cos^22x=0$
    $⇔cos2x=0$
    $⇔x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}$  $(k∈\mathbb{Z})$
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Thúy Mai