Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: tan2x=tan(x+pi/4). giúp e vs ạ

Toán Lớp 11: tan2x=tan(x+pi/4). giúp e vs ạ

Comments ( 2 )

  1. Điều kiện:
    $\begin{array}{l} \left\{ \begin{array}{l} \cos 2x \ne 0\\ \cos \left( {x + \dfrac{\pi }{4}} \right) \ne 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2x \ne \dfrac{\pi }{2} + k\pi \\ x + \dfrac{\pi }{4} \ne \dfrac{\pi }{2} + k\pi  \end{array} \right. \Leftrightarrow x \ne \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}\\ \tan 2x = \tan \left( {x + \dfrac{\pi }{4}} \right)\\  \Leftrightarrow 2x = x + \dfrac{\pi }{4} + k\pi \\  \Leftrightarrow x = \dfrac{\pi }{4} + k\pi \left( {k \in \mathbb{Z}} \right) \end{array}$
    Đối chiếu với điều kiện $x\in \emptyset$

  2. ~rai~
    \(\tan2x=\tan\left(x+\dfrac{\pi}{4}\right)\quad(1)\\ĐKXĐ:\begin{cases}\cos2x\ne 0\\\cos\left(x+\dfrac{\pi}{4}\right)\ne 0\end{cases}\\\Leftrightarrow \begin{cases}2x\ne \dfrac{\pi}{2}+k\pi\\x+\dfrac{\pi}{4}\ne\dfrac{\pi}{2}+k\pi\end{cases}\\\Leftrightarrow \begin{cases}x\ne \dfrac{\pi}{4}+k\dfrac{\pi}{2}\\x\ne\dfrac{\pi}{4}+k\pi\end{cases}\\\Leftrightarrow x\ne\dfrac{\pi}{4}+k\dfrac{\pi}{2}.(k\in\mathbb{Z})\\(1)\Leftrightarrow 2x=x+\dfrac{\pi}{4}+k\pi\\\Leftrightarrow x=\dfrac{\pi}{4}+k\pi.\text{(không thỏa mãn)}\\\text{Vậy S=}\varnothing.\)

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Xuân