Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Rút gọn vế trái bằng vế phải cos⁶ x- sin⁶ x= 15/16cos2x+1/16cos6x

Toán Lớp 11: Rút gọn vế trái bằng vế phải
cos⁶ x- sin⁶ x= 15/16cos2x+1/16cos6x

Comments ( 2 )

  1. Lời giải và giải thích chi tiết:
    $\cos^6x-\sin^6x$
    $=(\cos^2x)^3-(\sin^2x)^3$
    $=(\cos^2x-\sin^2x)(\cos^4x+\cos^2x\sin^2x+\sin^4x)$
    $=\cos2x.(\cos^4x+2\cos^2x\sin^2x+\sin^4x-\cos^2x\sin^2x)$
    $=\cos2x.[(\cos^x+\sin^2x)^2-\cos^2x\sin^2x]$
    $=\cos2x.(1-\cos^2x\sin^2x)$
    $=\cos2x.\left(1-\dfrac{\sin^22x}{4}\right))$
    $=\cos2x.\left((1-\dfrac{1-\cos4x}{8}\right)$
    $=\cos2x-\dfrac{\cos2x(1-\cos4x)}{8}$
    $=\cos2x-\dfrac{\cos2x-\cos2x.\cos4x}{8}$
    $=\cos2x-\dfrac{\cos2x-\dfrac{1}{2}(\cos6x+\cos2x)}{8}$
    $=\cos2x-\dfrac{\dfrac{1}{2}\cos2x-\dfrac{1}{2}\cos6x}{8}$
    $=\cos2x-\dfrac{1}{16}\cos2x+\dfrac{1}{16}\cos6x$
    $=\dfrac{15}{16}\cos2x+\dfrac{1}{16}\cos6x$
    Vậy $\cos^6x-\sin^6x=\dfrac{15}{16}\cos2x+\dfrac{1}{16}\cos6x$  (Đpcm).

Leave a reply

222-9+11+12:2*14+14 = ? ( )

About Nhiên