Register Now

Login

Lost Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

222-9+11+12:2*14+14 = ? ( )

Toán Lớp 11: Giúp em với 1.Sin^2 2x-cos^2 8x=sin(10x+17π/2) 2.sin(2x+17π/2)-3cos(x-15π/2)=1+2sinx 3.2sin^3 x-sinx=2cos^3x-cosx+cos2x

Toán Lớp 11: Giúp em với
1.Sin^2 2x-cos^2 8x=sin(10x+17π/2)
2.sin(2x+17π/2)-3cos(x-15π/2)=1+2sinx
3.2sin^3 x-sinx=2cos^3x-cosx+cos2x

Comments ( 1 )

  1. Giải đáp:
     
    Lời giải và giải thích chi tiết:
    1. $sin(10x + \dfrac{17π}{2}) = sin(10x + \dfrac{π}{2} + 8π)$
    $ = sin(10x + \dfrac{π}{2}) = cos10x$
    $ PT ⇔ 2sin²2x – 2cos²8x = 2cos10x$
    $ ⇔ (1 – cos4x) – (1 + cos16x) = 2cos10x$
    $ ⇔ (cos16x + cos4x) + 2cos10x = 0$
    $ ⇔ 2cos10xcos6x + 2cos10x = 0$
    $ ⇔ 2cos10x(cos6x + 1) = 0$
    – TH1 $: cos10x = 0 ⇔ 10x = (2k + 1)\dfrac{π}{2} ⇔ x = (2k + 1)\dfrac{π}{20} $
    – TH2 $: cos6x = – 1 ⇔ 6x = (2k +1)π ⇔ x = (2k + 1)\dfrac{π}{6} $
    2. Tương tự câu 1$: sin(2x + \dfrac{17π}{2}) = cos2x$
    $ cos(x – \dfrac{15π}{2}) = cos(x + \dfrac{π}{2} – 8π)$
    $ = cos(x + \dfrac{π}{2}) = – sinx$
    $ PT ⇔ cos2x + 3sinx = 1 + 2sinx$
    $ ⇔ (1 – cos2x) – sinx = 0$
    $ ⇔ 2sin²x – sinx = 0$
    $ ⇔ sinx(2sinx – 1) = 0$
    – TH1 $: sinx = 0 ⇔ x = kπ$
    – TH2 $: sinx = \dfrac{1}{2} ⇔ x = \dfrac{π}{6} + 2kπ;  x = \dfrac{5π}{6} + 2kπ $
    3. $PT ⇔ – sinx(1 – 2sin²x) – cosx(2cos²x – 1) – cos2x = 0$
    $ ⇔ – sinxcos2x – cosxcos2x – cos2x = 0$
    $ ⇔ – cos2x(sinx + cosx + 1) = 0$
    – TH1 $: cos2x = 0 ⇔ 2x = (2k + 1)\dfrac{π}{2} ⇔ x = (2k + 1)\dfrac{π}{4} $
    – TH2 $: sinx + cosx = – 1 $
    $ ⇔ \sqrt{2}sin(x + \dfrac{π}{4}) = – 1 ⇔ sin(x + \dfrac{π}{4}) = – \dfrac{\sqrt{2}}{2}$
    $  x + \dfrac{π}{4} = – \dfrac{π}{4} + k2π ⇔ x = – \dfrac{π}{2} + k2π $
    $  x + \dfrac{π}{4} = – \dfrac{3π}{4} + k2π ⇔ x = – π + k2π $
     

Leave a reply

222-9+11+12:2*14+14 = ? ( )